
Chapter 1

Introduction

Ravel is an intuitive and powerful way to analyse data. Its key feature is the
Ravel: a visual tool for manipulating and analysing data.

This is a blank Ravel—a Ravel with no data attached to it:

1

2 CHAPTER 1. INTRODUCTION

To use a Ravel, you first need to import a data file–at present this must be
a CSV file (other data sources will be added in later releases). Once the data
is imported, the data object can be attached to a Ravel. This is a Ravel with
data attached:

InflationData
BIS

There are many ways to manipulate and display data directly from a Ravel.
This is a Ravel with data attached and selected for graphing: the ”Year on Year
Changes” data is selected from the Unit of Measure axis; two countries (Japan
and the United States) are selected from the Reference area axis; Monthly data
is chosen from the Frequency axis; and Calipers are applied to the Date axis to
select data from 1960 till 2024.

3

InflationData
BIS

Inflation 1960-2025

Date

P
e
rc

e
n
t

p
e
r

Y
e
a
r

19
61

19
67

19
73

19
80

19
86

19
92

19
99

20
05

20
11

20
18

0

10

20

 1960 2025

Ravel the object itself makes it far easier to drill down into and visualise
data than using either a spreadsheet, or the Pivot Tables that standard Business
Intelligence program use.

Ravel the program enables easy analysis of data using self-documenting
flowchart formulas.This is a Ravel with data selected–for six countries, on the
annualised monthly inflation rate, for dates from January 2001 till January
2024–and assigned to a variable (”Post2000”).

4 CHAPTER 1. INTRODUCTION

InflationData
BIS

Monthly Inflation Rates

Date

P
e
rc

e
n
t

p
e
r

Y
e
a
r

20
01

20
03

20
05

20
08

20
10

20
12

20
15

20
17

20
19

20
22

0

2

4

6

8

10

12

Post2000

Post2000

Finally, the data is analyzed by (a) working out the average inflation rate for
the selected countries, and (b) subtracting the average from the actual inflation
rate for each country.

The average inflation rate was calculated using the formula:

¿

This one formula is applied to every country in the Ravel (six countries in
this case) and every quarterly data point (80 quarters). Doing the same analysis
with a spreadsheet would require writing an obscure cell reference formula and
replicating it across 480 cells.

5

The final example is the comparison of average inflation outcomes for the
six countries, and the deviation of them from the average. This illustrates the
capacity of Ravel to rapidly provide insights from data–in this case, that the
best-performing country during the post-Covid inflation was Japan, and the
worst performing were the USA and UK. This is noteworthy, because both the
USA and UK sharply increased interest rates with the intention of reducing
inflation, while Japan kept its interest rate constant. Perhaps then, interest
rates aren’t effective at controlling interest rates?

InflationData
BIS

Post2000

Post2000 <x> InflationAverage

InflationAverage

Average Inflation Rate

Date

P
e
rc

e
n
t

p
e
r

Y
e
a
r

20
01

20
03

20
05

20
08

20
10

20
12

20
15

20
17

20
19

20
220

1

2

3

4

5

6

7

8

Post2000

Inflation Gap by Country

Date

P
e
rc

e
n
t

a
b
o
v
e
 o

r
b
e
lo

w
 a

v
e
ra

g
e

20
01

20
03

20
05

20
08

20
10

20
12

20
15

20
17

20
19

20
22

-4

-3

-2

-1

0

1

2

3

4

InflationGap

InflationGap

These examples are drawn from economics, mainly because Ravel’s inventor
is an economist (and a contrarian one at that). But Ravel can analyze any data
you give it—marketing data, scientific data, production data, whatever. It can
also handle enormous data sets, far larger than are manageable with Excel.

We hope these examples show how easy it is to turn data into information
using Ravel.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Getting Started with Ravel

Ravel has three main components:

• The Ravel, a visual representation of your data;

• Equations expressed as flowcharts; and

• The system-dynamics engine Minsky

2.1 System requirements

Ravel is a proprietary program for data analysis which currently only runs on
Windows. It is built on top of Minsky, which is an open source program available
for Windows, Mac OS X,and various Linux distributions. Some components of
the interface are specific to Minsky. This ”Getting Started” guide focuses on
the components used by Ravel. For a getting started guide to Minsky, click
here.

2.2 Getting help

Press the F1 key, or select “help” from the context menu. Help is context-
sensitive. If you press F1 while the mouse is hovering over a widget–for example,
the addition block–then the help window will appear with instructions on how
to add elements together.

2.3 Components of the Program

There are 5 main components to the Ravel interface:

1. The menus.

File Edit Bookmarks Insert Options Simulation Help

7

8 CHAPTER 2. GETTING STARTED WITH RAVEL

2. The Operations controls

3. The Tabs.

These are

• Wiring, where a model is defined;

• Equations, which shows you a bitmapped image of all the equations
in your model (to see well-formatted equations, use the ”File/Export
Canvas As” menu, choose LaTeX as the output format, and load the
resulting .TeX file into a LaTeX editor);

• Summary, which provides a detailed and mathematically formatted
table of all the components of your model;

• ”Phillips Diagram”, which is a Minsky-specific feature not used by
Ravel;

• ”Publication”, which is a default blank canvas onto which any com-
ponent of your model can be placed for documentation purposes;
and

• The ”+” tab, which enables you to create and name a new Publica-
tion tab. Any number of Publication tabs can be created, which lets
you save multiple views of a file for different audiences–the one for
auditing, say, would be different to the one for marketing, and so on.

4. The design icons. These are ”widgets” which are placed on the canvas to
perform various operations. These include data import parameters, Ravel
objects, plots and sheets for displaying data, mathematical operators for
analysing your data, and so on. These are explained in detail in the
reference sections of the online help.

5. And finally, the Design Canvas–the large drawing area beneath the buttons
and icons.

2.3. COMPONENTS OF THE PROGRAM 9

Some of the elements of the interface are specific to the simulation engine
Minsky–for example, the Record and Replay buttons, the Reverse checkbox,
”Run-Stop-Step” buttons and the simulation speed slider. These aspects of the
interface are explained in the Minsky section of this manual.

Others are used by both Ravel and Minsky–for example, the Recalculate
button:

And the Zoom controls, which enable you to Zoom out and In, go to standard
Zoom, and fit the document to the visible screen:

2.3.1 Menu

The menu controls the basic functions of saving and loading files, default settings
for the program, etc. These will alter as the program is developed; the current
menu items (as of April 2024) are:

File Edit Bookmarks Insert Options Simulation Help

File

About Tells you the version of Ravel and/or Minsky that you are using.

10 CHAPTER 2. GETTING STARTED WITH RAVEL

New System Clear the design canvas. If you have made changes and haven’t
saved them, you will be prompted to save before the canvas is cleared.

Open Open an existing Ravel or Minsky file (Ravel files have the suffix of ”rvl”.
Minsky files have the suffix of “mky”).

Recent Files Provides a shortcut to some of your previously opened Ravel (or
Minsky) files.

Library Opens a web-based repository of models for the Minsky simulation
system.

Save Save the current file.

Save As Save the current file under a new name.

Insert File as Group Insert a Ravel/Minsky file directly into the current
model as a group

Dimensional Analysis This is a Minsky-specific command to check whether
definitions in a simulation model are consistent

Export Canvas as Export the current canvas in svg, pdf, eps, tex, or m for-
mat. The current canvas (which varies depending on which Tab you have
open) can be exported in a number of different formats:

• SVG This is a ”vector graphics” format which can be inserted into
word processing (such as Word or OpenOffice) or presentation (Pow-
erpoint etc.) documents.

• PDF This saves the currently displayed canvas as an Adobe Acrobat
file

• EMF This saves the canvas in an enhanced form of the WMF (Win-
dows Metafile) vector graphics standard, for use in documentation
programs like Powerpoint and Word.

• Postscript This saves the canvas in an encapsulated form of PDF

• Portable Network Graphics This saves the canvas in a bitmap file
(PNG) for use in paint and photo programs, etc.

• LaTeX This exports the equations in a model in a mathematical
formatting language called LaTeX. This file can be imported into
mathematics programs like MathType to document the mathematical
logic in your model. If you are a LaTeX user yourself, you can load
this directly into your preferred LaTeX editor.

If your LaTeX implemention doesn’t support breqn, untick the wrap
long equations option, which can be found in the preferences panel
under the options menu.

2.3. COMPONENTS OF THE PROGRAM 11

• Matlab This exports the model as an ”m. file” for importing into the
algebraic program Matlab. This enables the analysis and simulation
of your model in a MatLab compatible system, such as MatLab1 or
Octave2.

Log simulation This Minsky-specific command outputs the results of simu-
lated variables into a CSV data file for later use in other programs.

Recording This Minsky-specific command records the states of a model as it
is being built for later replay.

Replay recording This Minsky-specific command replays a recording of model
states.

Quit Exit the program. Ravel will check to see whether you have saved your
changes. If you have, the program will close; if not, you will get a reminder
to save your changes.

Debugging use Items under the line are intended for developer use, and will
not be documented here.

Redraw Redraw may be useful if the screen gets messed up because of a display
bug (all programs have them!). For example, a bug could cause items on
the canvas to be scaled differently. Redraw could overcome this problem
without requiring you to exit the program.

Edit

• Undo and Redo allow you to step back and forward in your editing history.
If you undo a few edits, and then change the model at that point, the undo
history is then reset to commence with your new edit. Ravel supports the
standard Windows shortcuts of control-Z for undo and control-Y for redo.

• Cut/copy/paste. Selecting, or lassoing a region of the canvas will select a
group of icons, which will be shaded to indicate the selected items. Wires
joining two selected items will also be selected. Note that, compatible with
X-windows, selecting automatically performs a copy, so the copy operation
is strictly redundant, but provided for users familiar with systems where
an explicit copy request is required. Cut deletes the selected items. Paste
will paste the items in the clipboard as a group into the current model.
Ravel supports the Windows-standard shortcut keys of control-C for copy,
control-X for cut (which deletes the entity at the current location and
creates a copy for pasting elsewhere) and control-V for paste.

1https://en.wikipedia.org/wiki/MATLAB
2http://www.gnu.org/software/octave/

https://en.wikipedia.org/wiki/MATLAB
http://www.gnu.org/software/octave/

12 CHAPTER 2. GETTING STARTED WITH RAVEL

L

N

emprate

NAIRU

PhillipsSlope

⇒

L

N

emprate

NAIRU

PhillipsSlope

• Group selection. Create a group using the contents of the selection.
Groups allow you to organise more complicated systems components into
aggregated modules that make the overall system more comprehensible.
In Ravel, groups can be used to, for example, collect all the file importing
operations into a Group, thus removing these detail of these operations
from the top level view. This reduces the complexity of a canvas, which
can make it easier for a viewer to focus on the analysis that the program
is actually doing.

Bookmarks

Bookmarks store the location and scaling of a model for future reference. This
is an alternative to grouping as a means to organize a model. To create a
bookmark, move the canvas and zoom it to the level at which all the items you
wish to bookmark are visible. Then click on the Bookmark menu and choose
”Bookmark this position”. Give the Bookmark a name and it will be added
to this menu. To move to that location in the model, click on this Bookmark
name. Bookmarks can be deleted using the ”Delete bookmark” sub-menu.

Insert

This menu contains all the mathematical operator blocks used in Ravel, and
enables you to place those operators on the Canvas. You can get the same
effect by clicking on the Design Icons. A Ravel can be inserted from this menu,
as can Minsky-specific tools like Godley table items and Plots.

Options

The options menu allows you to customise aspects of Ravel and Minsky. At the
moment most options pertain to Minsky rather than Ravel, but this will change
as Ravel increases in complexity. In this section of the manual we ignore options
pertaining only to Minsky; these are covered in Getting-Started-Minsky

Preferences

• Number of recent files to display — this determines how many pre-
viously edited files are displayed on the recentfiles menu.

2.3. COMPONENTS OF THE PROGRAM 13

• Wrap long equations in LaTeX export. If ticked, Ravel & Minsky will
use the LaTeX ”breqn” package to produce nicer looking automati-
cally line-wrapped formulae. Because not all LaTeX implementations
are guaranteed to support breqn, untick this option if you encounter
problems.

• select a font for variable names, parameter names, etc.

Background colour — select a colour from which a colour scheme is com-
puted.

Simulation

These commands are specific to Minsky and control how a model is simulated.
They are covered in the Minsky component of this manual.

Help

Provides an in-program link to this manual. Note that pressing F1 will also
launch help windows in a context-sensitive way. That is, it will open the relevant
help section for whatever object the mouse is currently hovering over. Similarly,
each item on the canvas has a help menu item in the context menu relevant for
that item.

2.3.2 Record/Replay Buttons

These buttons control the recording / replay mode of Minsky. You can
record your interactions with Minsky, and replay those interactions for demon-
stration/presentation purposes. These commands are specific to Minsky and
are covered in the Minsky component of this manual.

2.3.3 Recalculate button

The recalculate button computes the values of all variables in a model. Ravel
will periodically recalculate, but this is a useful option if you wish to immediately
see the results of a calculation.

2.3.4 Run Buttons

14 CHAPTER 2. GETTING STARTED WITH RAVEL

These commands are specific to Minsky and are covered in the Minsky com-
ponent of this manual.

2.3.5 Speed slider

The speed slider controls the rate at which a model is simulated. These
commands are specific to Minsky and are covered in the Minsky component of
this manual.

2.3.6 Zoom buttons

The Zoom buttons zoom in and out on the wiring canvas. The same func-
tionality is accessed via the mouse scroll wheel. The reset zoom button 0

resets the zoom level to 1, and also recentres the canvas. It can also be used to
recentre the equation view.

The Zoom to Fit button zooms the model so that it just fits in the current
canvas window.

2.3.7 Simulation time

In the right hand top corner is a textual display of the current simulation time
t, and the current (adaptive) difference between iterations ∆t. This information
is specific to a Minsky simulation model.

2.3.8 Wiring and Equations Tabs

This allows you to switch between the visual block diagram wiring view and
other views of your document.

Wiring This is Ravel’s design canvas, where you import data, analyse it using
Ravel’s mathematical operators and functions, and produce visualisations
using Plots and Sheets.

Equations As you analyse a model using the flowchart operators in Ravel, the pro-
gram converts the flowchart logic into standard mathematical formulas.
This Tab gives you an instant view of the mathematical logic in your
model.

2.3. COMPONENTS OF THE PROGRAM 15

Summary This tab provides a structured view of all the equations in a model, with
details about the number of dimensions and values in a formula.

For example, this model imports data from the Bank of International
Assessments, separates the data into a number of variables, and uses data
on debt in domestic currency and debt as a percentage of GDP to derive
GDP in domestic currency data.

16 CHAPTER 2. GETTING STARTED WITH RAVEL

This is the Summary Tab for that model, showing the variable names,
their mathematical definitions, their dimensions, and any initial values
assigned to them.

2.3. COMPONENTS OF THE PROGRAM 17

Phillips Diagram This is a Minsky-specific feature which is covered in the Minsky section
of this manual.

Publication Publication Tabs allow you to place specific items from the Wiring diagram
onto a documentation canvas. The default Tab is called ”Publication”,
and additional user-named Tabs can be added using the ”+” Tab.

To place an item on a Publication Tab, right-click on it on the Wiring Tab,
and then click on ”Add item to a publication tab”. Click on the desired
named tab from the resulting menu. The item will then be placed in the
top-left-hand corner of the selected Tab. You can then place it wherever
you want on the Publication Tab.

+ This creates a new tab. Provide a name in the form and press Enter or
click OK and the new Tab will be created.

2.3.9 Design Icons

These are the “nuts and bolts” of data analysis using Ravel, and model-
building using Minsky. There is a substantial number of icons, and this number
will grow over time as more data analysis features are added.

18 CHAPTER 2. GETTING STARTED WITH RAVEL

The essential icons for Ravel are the first two: Import Data and insert
a Ravel .

Import data Opens an import CSV file dialog, which allows a CSV file to
be loaded into a parameter in Ravel (the default name of the parameter
is the name of the file being imported). See Importing CSV files for full
details. After a data file is imported, the next step is to attach it to a
Ravel.

Ravel . This places a Ravel on the wiring canvas. The first time this is done
in a document, the Ravel is displayed full-size in Edit mode. Subsequent
Ravels are displayed in icon mode. For full details on using a Ravel see
Ravel.

Plot widget Add plots to the canvas.

Sheet widget Add a sheet to the canvas.

Variable var .

This is a pop-up menu, which gives access to the form that creates vari-
ables, constants and parameters, and access to the Browser, which is a
window that lists all the variables and parameters in a model, and enables
them to be placed on the wiring canvas.

Variables are entities whose value changes as a function of time and its
relationship with other entities in your model. Click on it and a variable
definition window will appear:

The only essential step here is providing a name for the Variable.

Ravel supports the LaTeX language for naming variables (and parame-
ters), which enables you to:

• Use subscripts and superscripts. The character following an under-
score character is subscripted, while the character following a caret

2.3. COMPONENTS OF THE PROGRAM 19

symbol ˆ is superscripted. If the or ˆ is followed by text in paren-
theses (curly brackets) {}, then all the text within the parentheses is
superscripted or subscripted; and

• Use Greek characters. The English name for a Greek letter (alpha,
beta, gamma), preceded by a backslash character \ generates the
equivalent Greek letter as part of a variable’s name (α, β, γ);

This enables more readable variables to be defined, such as, for example
∆SalesStateProduct.

You can also enter a value for it (and a rotation in degrees), but these
can be omitted. In a dynamic model, the value will be generated by the
model itself, provided its input is wired.

When you click on OK (or press Enter), the newly named variable will
appear in the top left hand corner of the Canvas. Move the mouse cursor
to where you want to place the variable on the Canvas, click, and it will
be placed in that location.

Constants are entities whose value is unaffected by the simulation or other
entities in the model. Click on it and a constant definition window will
appear:

The only essential element here is its value. You can also specify its
rotation on the Canvas in degrees. You can vary the value of a constant
or parameter using the arrow keys or the slider button on top of a constant
or parameter.

A constant is just a type of variable, which also include parameters (named
constants), flow variables, stock variables and integration variables. In
fact there is no real conceptual difference between creating a constant or
creating a variable, as you can switch the type using the type field.

Like the variable and constant button, the parameter button creates a
variable defaulting to the parameter type. Parameters differ from flow

20 CHAPTER 2. GETTING STARTED WITH RAVEL

variables in not having an input port, and differ from constants in having
a name and being controllable by a slider during simulation.

Lock Lock widgets are used with Ravels. A lock keeps a record of the
current state of a Ravel: the items selected on its axes, the effect of calipers
in selecting data ranges, and so on. You can then manipulate the Ravel
without changing the output from the Lock, which can be assigned to a
variable for further use. You can also impose the state of a Lock on its
associated Ravel.

Notes Add textual annotations

Time t embeds a reference to the simulation time on the Canvas. This is a
Minsky-specific feature.

Binary operations . These execute the stated binary mathematical oper-
ations: operations that require two (or more) inputs. Where appropriate,
each input port to a binary operator can take multiple wires—so that to
add five numbers together, for example, you can wire 1 input to one port
on the Add block, and the other four to the other port. The same applies
to the subtract, multiply, and divide blocks: multiple inputs to the input
ports on the subtract operator are added together, and then the sum of
inputs attached to the ”-” port is subtracted from the sum of the inputs
attached to the ”+” port. For the divide block, the product of the inputs
to the ”*” port is divided by the product of the inputs to the ”/” port.

Min & Max Functions. These take the minimum and maximum values,
respectively. These also allow multiple wires per input. The sum of the
inputs to one port is compared to the sum of the inputs on the other.

Pow and log. These are binary operations (taking just two arguments).
In the case of the power operation, the exponent is the top port, and
the argument to be raised to that exponent is the bottom port. This is
indicated by the x and y labels on the ports. In the case of logarithm, the
bottom port (labelled b) is the base of the logarithm.

Logical Operators < ≤, =, ∧ ∨ ¬ (and, or, not)] These return 0 for false
and 1 for true.

Unary functions √ These are a fairly standard complement of mathematical
functions which take only one input–though this input can have multiple
dimensions.

Reduction operations ∑ This menu contains operations that reduce a vector
to a scalar, or reduce the rank of a tensor. Typically sum, product, any,
all etc.

Scans ∑+ These are running sums and the difference operator

2.3. COMPONENTS OF THE PROGRAM 21

Miscellaneous tensor operations ⊗ Any other tensor function not covered
elsewhere.

Switch Add a piecewise-defined function block to the canvas. Also known
as a hybrid function.

User defined function f(x) You can define your own function using an alge-
braic expression, such as exp(-x^2y)+.

Godley Table . This is the fundamental element of Minsky that is not
found (yet) in any other system dynamics program. It is covered in the
Minsky chapter of this manual.

Integration ∫dt . This inserts a variable whose value depends on the integral of
other variables in the system. It is discussed further in the Minsky section
of the manual.

Derivative Operator d
dt This operator symbolically differentiates its input.

It is a component of Minsky which is explained in the Minsky section of
this manual.

2.3.10 Design Canvas

The Design Canvas is where you develop your model. A model consists of a
number of blocks—imported data in parameters, Ravels, user-defined param-
eters, variables, constants, mathematical operators and the display elements
(plots and sheets)—connected by wires.

The canvas is zoomable, either via the zoom buttons on the toolbar, or via
the mouse scroll wheel. It is also pannable, either via the scroll bars on the
right and bottom, or by holding the shift key and left mouse button together.
The canvas is effectively unlimited, however the scroll bars treat the canvas as
a 10000 pixels in size.

22 CHAPTER 2. GETTING STARTED WITH RAVEL

2.3.11 Equations tab

This displays the mathematical representation of the model

2.3.12 Summary Tab

This tab provides a summary table of all variables in the system, in a heirarchical
fashion that can be navigated by expanding or hiding sections by toggling the
caret. Each variable shows its name, it definition, dimensions (for tensor-valued
variables), initial expression, units and current value.

Most of these fields are editable, and usually do the obvious thing. Changing
a variable’s name will do a replace all instances operation to update all variables
of the same name. Changing a variable’s definition will replace the wiring graph
leading into the variable by a user defined function containing your edited string.
At some future point, functionality will be added to convert a user defined
function into a wiring graph.

2.3.13 Phillips diagram tab

This tab implement’s Minsky’s take on a Phillips diagram showing the stocks
and flows in a monetary economy. The Phillips tab shows all the information
contained in the Godley tables of the model - if there aren’t any, this tab will
be blank.

Initially, all the stocks will be arranged around a circle, with the flows shown
as connecting arrows showing the current direction of the flow. You can move
and rotate the stocks, and bend the flows to make a pleasing layout. The stocks

https://en.wikipedia.org/wiki/Phillips_Machine
https://en.wikipedia.org/wiki/Phillips_Machine

2.3. COMPONENTS OF THE PROGRAM 23

will be coloured as though filled with a fluid like Bill Phillip’s original analogue
computer, and dynamically updated as the simulation proceeds.

2.3.14 Publication tab

Publication tabs allow the creation of dashboards to emphasise certain aspects
of a simulation. For example, you may wish to focus on a particular plot or
Godley table when running the simulation.

Multiple publication tabs can be created by clicking the ’+’ tab.
Any item from the wiring tab can be added to a publication tab, and then

moved, resized or rotated independently of the item on the wiring tab. For
items that dynamically update, the publication tab will be updated dynamically
during the simulation.

Textual annotation can be added to the publication tab, independently of
any annotations on the wiring tab.

Wires cannot be added to the publication tab, however you can insert arrows
(eg →) by typing the LaTeX text \rightarrow, and then rotate and scale the
arrow to connect parts of the dashboard together.

2.3.15 Wires

The wires in a model connect blocks together to define equations. For example,
to write an equation for 100/33, you would place a const on the canvas, and give
it the value of 100:

Then do the same for 33, and place a divide block on the canvas:

100

3

24 CHAPTER 2. GETTING STARTED WITH RAVEL

Then click on the right hand edge of 100 and drag to extend the wire to the
numerator (×) port of the divide operation.

Finally, add the other wire.

2.4 Working with Ravel

2.4.1 Components in Ravel

There are several types of components in Ravel

1. Data storage parameters, which load in data from an external CSV file;

2. Ravels, which take data from a data storage parameter and create a multi-
dimensional graphical rendition of the data, with one axis per dimension;

3. Mathematical operators such as plus (+), minus (-), etc. These are all
aware of the dimensions of your data, so they act on arrays of data, rather
than single cells as with spreadsheet formulas;

4. Constants (or parameters, which are named constants) which are given a
value by the user;

5. Variables whose values are calculated by the program during a simulation
and depend on the values of constants and other variables; and

6. Groups, which allow components to be grouped into modules that can be
used to construct more complex models.

2.4.2 Inserting a model component

There are five ways to insert a component onto the Canvas:

1. Click on the desired Icon on the Icon Palette, drag the block onto the
Canvas and click the mouse where you want to insert it

2.4. WORKING WITH RAVEL 25

2. Choose Insert from the menu and select the desired block there

26 CHAPTER 2. GETTING STARTED WITH RAVEL

3. Right-click on an existing block and choose copy. Then place the copy
where you want it on the palette.

4. Variables can be inserted by typing the variable name on the canvas, and
constants can be entered simply by typing the number on the canvas.
Similarly, operations can be inserted by typing the operator name (eg
sin, or *). Notes can be inserted by starting the note with a # character.

5. Variables can also be picked from the Variable Browser and placed on the
canvas.

2.4.3 Creating an equation

Equations are entered in Ravel graphically. Mathematical operations like addi-
tion, multiplication and subtraction are performed by wiring the inputs up to
the relevant mathematical block. The output of the block is then the result of
the equation.

For example, a simple equation like

100/3 = 33.3

is performed in Minsky by defining a constant block with a value of 100, defining
another with a value of 3, and wiring them up to a divide-by block. Then attach
the output of the divide block to a variable, and run the model by clicking on

:

2.4. WORKING WITH RAVEL 27

100

3

Answer

x 0.1

-10 -8 -6 -4 -2 0 2 4 6 8

x 0.1

-8

-6

-4

-2

0

2

4

6

8

If you click on the equation tab, you will see that it is:

Answer =
100

3

2.4.4 Wiring components together

A model is constructed by wiring one component to another in a way that defines
an equation. Wires are drawn from the output port of one block to the input
port of another. Ports are circles on the blocks to which wires can be attached,
which can be seen when hovering the pointer over the block. Variables have an
input and an output port; constants and parameters only have an output port.
A mathematical operator has as many input ports as are needed to define the
operation.

To construct an equation, such as Fred - Wilma = Barney:
Click the mouse near the output port of one block and drag the cursor to the

input port of another while holding the mouse button down. An arrow extends
out from the output port. Release the mouse button near the required input
port of the operator. A connection will be made.

Fred

Wilma

The equation is completed by wiring up the other components in the same
way.

28 CHAPTER 2. GETTING STARTED WITH RAVEL

Fred

Wilma

Barney

Chapter 3

A Ravel Tutorial

3.1 Slicing, Dicing and Rotating Data

A Ravel is a graphical representation of multi-dimensional data. Unlike a
spreadsheet, which has only two dimensions, a Ravel can have as many dimen-
sions as your data. You manipulate the axes of a Ravel to select the components
of your data that you wish to see, and those components are then the output
of the Ravel, which can be graphed or displayed directly, or attached to vari-
ables which can be further analysed using the flowchart equation capabilities of
Ravel. The Ravel below loads data from the Bank of International Settlements
on house prices. This data has four dimensions:

Date Quarterly data from 1927 till 2024: 388 entries

Unit of Measure House Price Index where 2010 = 100; 2 entries

Value Nominal or Real (CPI-deflated) prices: 2 entries

Reference Area Country or Region: 62 entries

29

30 CHAPTER 3. A RAVEL TUTORIAL

BISHPI
Data

Value

When a Ravel is first attached to data, it outputs the entire data set—which
is indicated by the dimension count 4D in the lower right quadrant of this Ravel.
You can see this by attaching a Sheet to the output port of the Ravel:

3.1. SLICING, DICING AND ROTATING DATA 31

BISHPI
Data

WSSPPcsvcol

Value

R
e
fe

re
n
ce

 a
re

a

1927-Q1 | Nominal

Unit of measure

Advanced economies

Australia

Austria

Belgium

Brazil

Bulgaria

Canada

Chile

Index, 2010 = 100 Year-on-year changes, in per cent

32 CHAPTER 3. A RAVEL TUTORIAL

The right-pointing axis of the Ravel determines what is shown on the rows of
the sheet, while the down-pointing Axes of the Ravel determine what is shown
by the columns. At present these are Reference Area by Value, and the sheet
shows a slice of that data for the first entry in the Date and Value axes–1927-Q3
and Nominal.

It would be more useful to see the data by Reference Area by Date. To get
that view, click the left mouse button on the arrowhead of the Date axis, hold
the button down, and rotate the axis into the down direction, which is currently
occupied by the Value axis. When you release the mouse button, the Date axis
will replace the Unit of measure axis in the down direction, and the data in the
Sheet will now have countries by rows and Quarters by columns.

3.1. SLICING, DICING AND ROTATING DATA 33

BISHPI
Data

WSSPPcsvcol

Value

R
e
fe

re
n
ce

 a
re

a

Index, 2010 = 100 | Nominal

Date

Advanced economies

Australia

Austria

Belgium

Brazil

Bulgaria

Canada

Chile

1927-Q1 1927-Q2 1927-Q3 1927-Q4 1928-Q1 1928-Q2

34 CHAPTER 3. A RAVEL TUTORIAL

The Sheet is still blank because there is no data for the current selections–
the Index for Nominal House Prices in the very first Quarters of the data (in
the years 1927 and 1928) for the first countries in the file in alphabetical order.

To see data immediately, you can take advantage of a feature of the Sheet:
it can display the first few rows and columns of data (the default setting), which
we call the Head, the last few (the Tail), or a few of both (Head and Tail). To
show the last few rows and columns, right-click on the Sheet and choose Row
Slices/Tail and Column Slices/Tail”. That will then show you the last countries
in the data file in alphabetical order, and the last quarters in the data file.

The data still shows the Nominal Index data, since these are the first entries
in the other two axes. You can control the entry shown using the selector dots
on those two axes: these are the coloured dots that are currently within the
inner circle of the Ravel. Selector dots can be moved:

• By using the mouse. Click on a dot and drag it to the required selection;
or

• By using the arrow keys. Use the mouse to move the cursor so that it is
hovering over an axis; then use the up or right arrow key to move the dot
out towards the arrowhead on an axis, or the down or left arrow key to
move back towards the center.

To see the Real (CPI-adjusted) annual rate of change of house prices, use
the selector dot on those two axes. That selection is shown below–where Date
has also been rotated to the rows so that Countries are shown by the columns.
This already gives one interesting insight: house prices were falling across the
world in 2023.

3.1. SLICING, DICING AND ROTATING DATA 35

BISHPI
Data

WSSPPcsvcol

Value

D
a
te

Reference area

2022-Q1

2022-Q2

2022-Q3

2022-Q4

2023-Q1

2023-Q2

2023-Q3

2023-Q4

Advanced economies

7.5397

4.6594

0.5302

-2.7492

-4.8473

-4.6777

-2.7149

Australia

14.7438

6.7951

-2.8586

-10.114

-12.2902

-9.2779

-2.8638

2.7659

Austria

6.1627

4.8801

0.9063

-4.8376

-8.4897

-10.2016

-9.0924

-7.3811

Belgium

-1.406

-2.791

-4.4736

-5.68

-2.5668

-3.0929

-2.2919

Brazil

-5.4752

-7.8562

-6.2008

-4.6046

-4.198

-2.6643

-3.2286

-3.1321

Bulgaria

0.8889

-0.8731

-1.9522

-3.1932

-5.2526

0.4864

1.5855

Canada

18.6327

7.2101

-4.0411

-9.8407

-18.8814

-11.7102

-3.5862

Chile

-0.7663

-3.068

-4.8318

-7.1774

-3.3672

-1.1358

2.419

China

-1.106

-4.2636

-5.788

-5.4411

-4.562

-2.7707

-3.1003

36 CHAPTER 3. A RAVEL TUTORIAL

BISHPI
Data

WSSPPcsvcol

Value

D
a
te

Reference area

2022-Q1

2022-Q2

2022-Q3

2022-Q4

2023-Q1

2023-Q2

2023-Q3

2023-Q4

Advanced economies

7.5397

4.6594

0.5302

-2.7492

-4.8473

-4.6777

-2.7149

Australia

14.7438

6.7951

-2.8586

-10.114

-12.2902

-9.2779

-2.8638

2.7659

Austria

6.1627

4.8801

0.9063

-4.8376

-8.4897

-10.2016

-9.0924

-7.3811

Belgium

-1.406

-2.791

-4.4736

-5.68

-2.5668

-3.0929

-2.2919

Brazil

-5.4752

-7.8562

-6.2008

-4.6046

-4.198

-2.6643

-3.2286

-3.1321

Bulgaria

0.8889

-0.8731

-1.9522

-3.1932

-5.2526

0.4864

1.5855

Canada

18.6327

7.2101

-4.0411

-9.8407

-18.8814

-11.7102

-3.5862

Chile

-0.7663

-3.068

-4.8318

-7.1774

-3.3672

-1.1358

2.419

China

-1.106

-4.2636

-5.788

-5.4411

-4.562

-2.7707

-3.1003

3.2. ATTACHING VARIABLES TO RAVELS 37

To really develop insights from your data, you attach the output of the Ravel
to variables, and analyse them using Ravel’s flowchart mathematics formulas.

3.2 Attaching Variables to Ravels

The source data file combines information on House Price Indices (where the
base year is 2010, so all indices are 100 during 2010), and the annual rate of
change of house prices, with data on both Nominal and Real (CPI-deflated)
prices. To analyse the data, it is useful to separate it into House Price Index
information and House Price Inflation information, and to focus on Real rather
than Nominal Prices. That is done by attaching the output of the Ravel to
Locks, and the Locks to named Variables that you create.

The next image shows two variables HPIReal and ∆HPI. The lock for
∆HPI has been closed, while the lock for HPIReal is still open. Once the lock
is closed, the output from that lock remains the same, even if the selection on
the source Ravel is altered.

38 CHAPTER 3. A RAVEL TUTORIAL

With the data separated into index and inflation data, we can now focus on
those subsets of the data rather than the entire source file. The next image shows
the source Ravel in icon mode, with the house price inflation data attached to
another Ravel and the currently selected data displayed in a sheet.

3.2. ATTACHING VARIABLES TO RAVELS 39

BISHPI
Data

HPIReal

ΔHPI
%

ΔHPI
%

ΔHPI
%

D
a
te

Reference area

2022-Q1

2022-Q2

2022-Q3

2022-Q4

2023-Q1

2023-Q2

2023-Q3

2023-Q4

Advanced economies

7.5397

4.6594

0.5302

-2.7492

-4.8473

-4.6777

-2.7149

Australia

14.7438

6.7951

-2.8586

-10.114

-12.2902

-9.2779

-2.8638

2.7659

Austria

6.1627

4.8801

0.9063

-4.8376

-8.4897

-10.2016

-9.0924

-7.3811

40 CHAPTER 3. A RAVEL TUTORIAL

The information in the sheet suggests a possibly useful piece of analysis:
why not compare the average for all advanced countries (the first entry on the
Reference Area axis) to each advanced country?

The image below shows the result of attempting to do this by selecting just
the data for ”Advanced Economies” (this is done using the ”Pick Axis Slices”
option on the right-click menu for the Reference Area axis, and then choos-
ing several entries by using control-click) and attaching that to a new vari-

able ∆HPIAvgAdvanced, while selecting a number of advanced economies from the
axis (Australia, Austria, Belgium, etc.) and assigning that to another variable
∆HPIAdvanced.

3.2. ATTACHING VARIABLES TO RAVELS 41

42 CHAPTER 3. A RAVEL TUTORIAL

3.3 Basic Analysis using Ravel

3.4 Linking Ravels

3.5 Displaying your results in Sheets and Plots

3.6 Using Publication Tabs

3.7 Working with Other Programs

3.8 Importing Data into Ravel

Chapter 4

Reference

4.1 Operations

4.1.1 Special constants

Some special constants (e = 2.72 . . ., π = 3.14 . . ., 0, 1, ∞) can be placed on the
canvas, via two methods:

• By clicking on the relevant icon on the Fundamental Constants toolbar;
or

• By typing the constant name on the canvas, and pressing Enter (or clicking
OK) in the variable definition window. These names are: Euler for e =
2.72 . . .; pi for π = 3.14 . . .; and inf for ∞.

4.1.2 Percent

The percent operator takes one input, and multiplies its elements by 100. It is
useful for converting fractions into percentages for display purposes.

The operator can be placed on the canvas in two ways:

• From the Fundamental Constants toolbar; or

• By pressing the percent key anywhere on the wiring canvas.

43

44 CHAPTER 4. REFERENCE

4.1.3 add +

Add multiple numbers together.
The input ports allow multiple wires, which are all summed. If an input

port is unwired, it is equivalent to setting it to zero.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By pressing the plus key anywhere on the wiring canvas.

4.1.4 subtract −
Subtract two numbers. The input ports allow multiple wires, which are summed
prior to the subtraction being carried out. If an input port is unwired, it is
equivalent to setting it to zero. Note the small ‘+’ and ‘−’ signs on the input
ports indicating which terms are added or subtracted from the result.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By pressing the minus key anywhere on the wiring canvas, followed by
pressing the Enter key, or clicking on OK in the text input window. The
reason for requiring the Enter key to be pressed—rather than immediately
placing the minus operator on the keyboard, as with the plus and multi-
ply operators—is that a user may wish to enter a negative number as a
constant.

4.1.5 multiply ×
Multiply numbers with each other. The input ports allow multiple wires, which
are all multiplied together. If an input port is unwired, it is equivalent to setting
it to one.

4.1. OPERATIONS 45

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By pressing the multiply (asterisk: *) key anywhere on the wiring canvas.

4.1.6 divide ÷
Divide a number by another. The input ports allow multiple wires, which are
multiplied together prior to the division being carried out. If an input port is
unwired, it is equivalent to setting it to one. Note the small ‘×’ and ‘÷’ signs
indicating which port refers to the numerator and which the denominator.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By pressing the divide key (/) anywhere on the wiring canvas.

4.1.7 log

Take the logarithm of the x input port, to base b. The base b needs to be
specified — if the natural logarithm is desired (b = e), use the ln operator
instead.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the word “log” anywhere on the wiring canvas, and then pressing
the Enter key.

When you use the direct typing method to enter the log operations, the text
entry window pops up. This allows you to type a variable/parameter name
starting with log (like, for example, “logical”. If you press Enter (or click on
OK) with only the word log in the window, the log operation will be placed on
the canvas.

46 CHAPTER 4. REFERENCE

4.1.8 pow xy

Raise one number to the power of another. The ports are labelled x and y,
referring the the formula xy.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the word “pow” anywhere on the wiring canvas and then press-
ing the Enter Key (or clicking on OK).

4.1.9 lt <

Returns 0 or 1, depending on whether x < y is true (1) or false (0).

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the letters “lt” on the canvas and then pressing the Enter key.

4.1.10 le ≤

Returns 0 or 1, depending on whether x ≤ y is true (1) or false (0).

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the letters “le” on the canvas and then pressing the Enter key.

4.1. OPERATIONS 47

4.1.11 eq =

Returns 0 or 1, depending on whether x = y is true (1) or false (0).

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the letters “eq” on the canvas and then pressing the Enter key.

4.1.12 min

Returns the minimum of x and y.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the letters “min” on the canvas and then pressing the Enter
key.

4.1.13 max

Returns the maximum of x and y.

48 CHAPTER 4. REFERENCE

4.1.14 and ∧
Logical and of x and y, where x ≤ 0.5 means false, and x > 0.5 means true. The
output is 1 or 0, depending on the result being true (1) or false (0) respectively.

The operator can be placed on the canvas in two ways:

• From the Binary Operations toolbar; or

• By typing the letters “and ” on the canvas and then pressing the Enter
key. Note the trailing underscore is required because and is a reserved
word in C++!

4.1.15 or ∨
Logical or of x and y, where x ≤ 0.5 means false, and x > 0.5 means true. The
output is 1 or 0, depending on the result being true (1) or false (0) respectively.

4.1.16 not ¬
The output is 1 or 0, depending on whether x ≤ 0.5 is true (1) or false (0)
respectively.

4.1.17 time t

Returns the current value of system time.

4.1.18 Gamma Γ

Returns the Gamma function of its argument:

Γ(x) =

∫ ∞
0

tx−1e−tdt

4.1.19 Factorial !

Returns the factorial of its argument:

0! = 1

n! =

n∏
i=1

i

Note:
n! = Γ(n+ 1)

which is how it is implemented in Minsky.

4.1. OPERATIONS 49

4.1.20 Polygamma ψ(n)(x)

Returns the polygamma function of the first argument x, with the order n being
given by the floor of the second argument.

ψ(n)(x) =
dn+1

dxn+1
ln Γ(x)

It relationship to the derivative of the Gamma function (and factorials) is
why Minsky provides this function.

4.1.21 differentiate d/dt

Symbolically differentiates its input with respect to system time, producing
d/dt[input]. For further explanation regarding differentiation, see this wikipedia
page.

4.1.22 User defined function

A user defined function is a functioned defined by an algebraic expression. Sup-
port for this feature is courtesy of the wonderful exprtk library developed by
Arash Partow.

A user defined function has a name, parameters and an expression. Example
expressions are things like x+y or sin(x). More details of the sorts of expressions
possible can be found in the User Defined Functions section of the manual.

The parameters are specified as part of the name, so a user defined function
adding x and y would be called useradd(a,y) and the sin example might be
called mysin(x). Functions with up to two arguments can be wired on the can-
vas. User defined functions can call other user defined functions, so specifiying
more than 2 parameters can be a useful thing to do.

4.1.23 copy

This just copies its input to its output, which is redundant on wiring diagrams,
but is needed for internal purposes.

4.1.24 integrate
∫
dt

Creates an integration (or stock) variable. Editable attributes include the vari-
able’s name and its initial value at t = 0. The function to be integrated needs
to be connected to the top port, labelled ‘f ’. The bottom port, labelled ‘0’, can
optionally be connected to a constant, parameter or variable, which is used to
specify the initial value of the integral.

Note that the units of the integral operator are given by the units of the
input, multiplied by the time unit, but the units of the integral’s variable are
user specified. It is an error for these to be mismatched, and running dimensional
analysis from the File menu will check for the consistency of this. Note that

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Derivative
http://www.partow.net/programming/exprtk/index.html

50 CHAPTER 4. REFERENCE

the user specified units in the integral variable can be used to dimension up the
integral if the integral variable is connected to the integral’s input.

4.1.25 sqrt
√

This produces the square root of the input value. For example, connecting the
value of 9 with the “sqrt” block will produce the value of 3.

4.1.26 exp

Connecting a variable (for example, “time”) to this block will produce the ex-
ponential function ex where x is the input variable.

4.1.27 ln

Produces a natural logarithm of the input, to the base of e. This takes the
equation loge x where x is the input.

4.1.28 sin

Produces a sine function of the input. For example, connecting a “time” block
to this function, and then to a graph, will produce a sine wave. For further
explanation regarding trigonemtric functions, see this wikipedia page1.

4.1.29 cos

Produces a cosine function of the input. For example, connecting a “time” block
to this function, and then to a graph, will produce a cosine wave. For further
explanation regarding trigonemtric functions, see this wikipedia page2.

4.1.30 tan

Produces a tangent function of the input. For example, connecting a “time”
block to this function, and then to a graph, will produce a tangent graph. For
further explanation regarding trigonemtric functions, see this wikipedia page3.

4.1.31 asin

Produces an arc sine function of the input, or the inverse of the sine function. For
further explanation regarding trigonemtric functions, see this wikipedia page4.

1https://en.wikipedia.org/wiki/Trigonometric functions
2https://en.wikipedia.org/wiki/Trigonometric functions
3https://en.wikipedia.org/wiki/Trigonometric functions
4https://en.wikipedia.org/wiki/Trigonometric functions

https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions

4.2. TENSOR OPERATIONS 51

4.1.32 acos

Produces an arc cosine function of the input, or the inverse of the cosine function.
For further explanation regarding trigonemtric functions, see this wikipedia
page5.

4.1.33 atan

Produces an arc tangent function of the input, or the inverse of the tangent
function. For further explanation regarding trigonemtric functions, see this
wikipedia page6.

4.1.34 sinh

hyperbolic sine function ex−e−x

2

4.1.35 cosh

hyperbolic cosine function ex+e−x

2

4.1.36 tanh

hyperbolic tangent function ex−e−x

ex+e−x

4.1.37 abs |x|
absolute value function

4.1.38 floor bxc
The greatest integer less than or equal to x.

4.1.39 frac

Fractional part of x, ie x− bxc.

4.2 Tensor operations

In the following operations, an axis argument can be supplied in the operation
edit dialog. The axis name is symbolic and available in a drop down box. If
the axis name is not specified, then the operation will be applied as though the
input was flattened (unrolled to a vector), and then the result reshaped to the
original tensor.

5https://en.wikipedia.org/wiki/Trigonometric functions
6https://en.wikipedia.org/wiki/Trigonometric functions

https://en.wikipedia.org/wiki/Trigonometric_functions
https://en.wikipedia.org/wiki/Trigonometric_functions

52 CHAPTER 4. REFERENCE

4.2.1 sum
∑

Sum along a given axis.

4.2.2 product
∏

Multiply along a given axis.

4.2.3 infimum

Return the least value along a given axis.

4.2.4 supremum

Return the greatest value along a given axis.

4.2.5 any

Return 1 if any value along a given axis is nonzero, otherwise return 0 if all are
zero.

4.2.6 all

Return 1 if all values along a given axis are nonzero, otherwise return 0 if any
are zero.

4.2.7 infindex

Return the index of the least value along a given axis.

4.2.8 supindex

Return the index of the greatest value along a given axis.

4.2.9 running sum
∑

+

Computes the running sum of the input tensor along a given axis. For example,
take this rank 2 tensor:  1 2 3 4

5 4 3 2
8 7 6 5


The running sum of this tensor, along the horizontal dimension, is: 1 3 6 10

5 9 12 14
8 15 21 26



4.2. TENSOR OPERATIONS 53

4.2.10 running product
∏

+

Computes the running product of the input tensor along a given axis. For
example, take this rank 2 tensor: 1 2 3 4

5 4 3 2
8 7 6 5


The running product of this tensor, along the horizontal dimension, is: 1 2 6 24

5 20 60 120
8 56 336 1680


4.2.11 difference ∆−,∆+

Computes the nearest neighbour difference along a given direction. The op-
tional argument (δ) can be used to specify the number of neighbours to skip
in computing the differences. The length of the dimension being differenced is
reduced by δ in the result.

It comes in two different forms which differ only in how the resultant x-
vector is calculated. ∆−i = xi− xi−δ, and ∆+

i = xi+δ − xi, where i refers to the
x-vector index.

4.2.12 index

Returns the index within the hypecube where the input is true (ie > 0.5). For
example, where

ι(3, 3) =

 0 3 6
1 4 7
2 5 8

 ,

idx(ι(3, 3) < 5) =

 0 3
1 4
2

 ,

Note that the output array has the same shape as the input, with unused values
padded with NANs (missing value).

Dimension and argument parameters are unused.

4.2.13 gather

Gather collects the values at index locations indexed by the second argument.
The output tensor has shape [i0, . . . iir, a0, . . . aj−1, aj+1, . . . aar] where [a0, . . . , aar]
is the shape of the first argument, and [i0, . . . , iir] is the shape of the second
second (index) argument, and j is the axis along which the gather is performed.

54 CHAPTER 4. REFERENCE

If the index is not an integer, the gather will linearly interpolate between
the values on either side. So, for example, x[2.5] = 0.5(x[2] + x[3]).

If the index value is outside the range of the x-vector along the axis being
gathered, then NAN is assigned to that tensor element.

4.2.14 inner product ·
Computes

zi1,...,irx−1,j1,...,jry−1
=
∑
k

xi1...,ia−1,k,ia+1...,irx−1
yj1,...,jry−1,k,

where a is the given axis, and rx and ry are the ranks of x and y respectively.

4.2.15 outer product ⊗
Computes

zi1,i2,...,irx ,j1,...,jry = xi1,,i2,...,irx yj1,...,jry .

where rx and ry are the ranks of x and y respectively.

4.2.16 Meld

The meld operation merges the hypercubes of its input tensors. The value at a
given hypercube value is given by the value of the first tensor that has a value
defined at that hypercube point. So ordering of input tensors does matter where
the data is inconsistent between input tensors.

For example, consider the following inputs and x-vectors:

1. {1.0, 2.0, 3.0} with x-vector {1, 2, 3}, and

2. {0.0, 1.5, 4.0} with x-vector {0, 2, 4}

then the resultant output has x-vector {0, 1, 2, 3, 4} and the values are {0.0, 1.0, 2.0, 3.0, 4.0}
if 1 is connected to port 1 and 2 connected to port 2. If they were connected
the other way around, the the values would be {0.0, 1.0, 1.5, 3.0, 4.0}.

4.2.17 Merge

The merge operation takes n tensors, finds the union hypercube (ie the hyper-
cube that contains all the input tensor hypercubes) and spreads the tensors as
necessary to make them conformant. Finally, the resultant tensor has an addi-
tional string dimensioned axis, each element of which is one of the input tensors.
This dimension should be named using the operation edit dialog. It is an error
for a hypercube to contain more than one axis with the same name.

4.2. TENSOR OPERATIONS 55

4.2.18 Slice

Slice will cut off a tensor along a given axis by the argument, as configured in
the operation edit dialog. For example slice({x1, x2, . . . xn}, 3) = {x1, x2, x3}.
If the tensor is rank one (ie a vector), it is not necessary to specify the axis.

If the slice argument is negative, then it refers to the number of elements from
the end of that axis. For example slice({x1, x2, . . . xn},−3) = {xn−3, xn−2, xn−1}.

4.2.19 Size

Size refers to the number of elements along a named dimension given by the
operation axisargument - eg a 3×2 rank 2 tensor with named axes “0” and “1”,
size(“1”)==2.

If the axis argument is left blank, the size returns the total number of ele-
ments present in the tensor. This may be less than the product of axis sizes if
the data is sparse.

4.2.20 Shape

Returns a vector of axis sizes. Coupling this operation with a gather operation
and variable would allow you interactively select axis size.

4.2.21 Mean

Returns the mean (or average) along a named dimension of all elements present.
If the dimension is not named, then the mean is over all elements present in the
tensor. Note that missing elements are not counted.

4.2.22 Median

Returns the median along a named dimension of all elements present. If the
dimension is not named, then the median is over all elements present in the
tensor.

4.2.23 Standard Deviation

Returns the standard deviation along a named dimension of all elements present.
If the dimension is not named, then the standard deviation is over all elements
present in the tensor. Note that missing elements are not counted.

σ =
1

N − 1

N∑
i

(xi − 〈x〉)2

56 CHAPTER 4. REFERENCE

4.2.24 k-th moment

Returns the k-th moment about the mean along a named dimension of all ele-
ments present. k is specified by the numerical argument of the operation, which
defaults to 1 (hence the result will be 0 in that case). If the dimension is not
named, then the k-th moment is over all elements present in the tensor. Note
that missing elements are not counted.

〈∆xk〉 =
1

N

∑
i

(xi − 〈x〉)k

Also

σ2 =
N

N − 1
〈∆x2〉

4.2.25 Histogram

Computes the histogram along a named dimension of all elements present. If
the dimension is not named, then the histogram is over all elements present in
the tensor. The number of bins is specified by the numeric argument to the
operation.

rand(100)

0 0.2 0.4 0.6 0.8 1 1.25

6

7

8

9

10

11

12

h
is
to
g
ra
m

0.051956
0.152531
0.253107
0.353682
0.454258
0.554833
0.655408
0.755984
0.856559
0.957135

9
12
10
12
9
12
10
9
5
12

An example usage of the histogram operation

4.3. SWITCH 57

4.2.26 Covariance

Computes the covariance of two tensors along named dimension. If the inputs
are of rank N and M respectively, the output will be a (N − 1) × (M − 1)
rank tensor, where the (i, j) element is the covariance of the i-th slice of the
first argument along the named dimension, and the j-th slice along the named
dimension. As such, it is conformant with the definition of cov function in
Octave, but not with the equivalently named function in Matlab:

Compatibility Note:: Octave always treats rows of X and Y as multi-
variate random variables. For two inputs, however, MATLAB treats
X and Y as two univariate distributions regardless of their shapes,
and will calculate ‘cov ([X(:), Y(:)])’ whenever the number of ele-
ments in X and Y are equal. This will result in a 2x2 matrix. Code
relying on MATLAB’s definition will need to be changed when run-
ning in Octave.

If only a single argument x is supplied to the covariance, then the result is
equivalent to cov(x, x), ie each slice is covaried with each other slice.

The formula for covariance between stochastic variables x and y is

cov(x, y) =
1

N − 1

∑
i

(xi − 〈x〉)(yi − 〈y〉)

4.2.27 Correlation coefficient ρ

See covariance for the interpretation of tensor valued arguments. The correlation
coefficient is defined as

ρ(x, y) =
cov(x, y)

σ(x)σ(y)

4.3 Switch

A switch block (also known as a case block, or select in the Fortran world)
is a way of selecting from a range of alternatives according to the value of the
input, effectively defining a piecewise function.

58 CHAPTER 4. REFERENCE

t

 1.00

 2.50

0 1 2 3-1

0

1

2

-1.00

An example switch block with 3 cases

The default switch has two cases, and can be used to implement an if/then/else
construct. However, because the two cases are 0 and 1, or false and true, a two
case switch statement will naturally appear “upside down” to how you might
think of an if statement. In other words, it looks like:

if not condition then

. . . else

. . .
You can add or remove cases through the context menu.

4.4 Variables

Variables represent values in a calculation, and come in a number of varieties:

Constants represent an explicit numerical value, and do not have a name.
Their graphical representation shows the actual value of the constant.

Parameters are named constants. All instances of a given name represent the
same value, as with all other named variables, so changing the value of one
parameter, either through its edit menu, or through a slider, will affect all
the others of that name. Parameters may be imported from a CSV file,
which is one way of inserting a tensor into the simulation.

Flow variables have an input port that defines how the value is to be cal-
culated. Only one flow variable of a given name can have its input port
connected, as they all refer to the same quantity. If no input ports are
connected, then flow variables act just like parameters.

Integral variables represent the result of integrating its input over time by
means of the differential equation solver. The integrand is represented by
the input to an integral operator that is attached to the integral variable.

Stock variables are the columns of Godley tables, and represent the integral
over time of the sum of the flow variables making up the column.

4.4. VARIABLES 59

Variables may be converted between types in the variable edit menu, avail-
able from the context menu, subject to certain rules. For example, a variable
whose input is wired anywhere on the canvas cannot be changed from “flow”.
Stock variables need to be defined in a Godley table, and so on.

4.4.1 Variable names

Variable names uniquely identify variables. Multiple icons on the canvas may
have the same name — they all refer to the same variable. Variable names
have scope, which is either local (no initial ‘:’), belonging to an outer group
(indicated by a leading ‘:’ on the inner group variable, and the outer group
variable having no such leading ‘:’), or completely global otherwise. You may
select a variable name from a drop down list in the “name” combo box, which
makes for an easier way of selecting exactly which variable you want.

4.4.2 Initial conditions

Variable initial conditions can be defined through the “init value” field of the
variable edit menu, or in the case of Godley table stock variables, through the
initial condition row of the Godley table. An initial value can be a simple
number, or it can be a multiple of another named variable (or parameter). In
case of symbolic definitions, it would be possible to set up a circular reference
where the initial value of variable A is defined in terms of the initial value of
variable B, which in turn depends on the intial value of A. Such a pathological
situation is detected when the system is reset.

4.4.3 Tensor valued initial conditions

There is also a simple functional language, which allows for the generation of
tensor-valued operations. These functions take the form func(n1, n2, . . . , nr)
where r is the desired rank, and n1, n2, etc are the dimensions of the tensor.
Available functions include:

name description
one the tensor is filled with ‘1’
zero the tensor is filled with ‘0’
iota the arithmetic sequence (0, 1, ...

∏
i ni)

eye diagonal elements filled with ‘1’, offdiagonal ‘0’
rand tensor filled with random numbers in the range [0, 1)

• eye is equivalent to one for vectors.

• rand generates different random numbers each time the simulation is reset,
and uses the clib rand() function.

4.4.4 Sliders

From the context menu, one can select a slider to be attached to a variable,
which is a GUI “knob” allowing one to control a variable’s initial value, or the

60 CHAPTER 4. REFERENCE

value of a parameter or constant. Adjusting the slider of an integral (or stock)
variable while the system is running actually adjusts the present value of the
variable. The sliders can also be adjusted using the keyboard arrow keys.

Slider parameters are specified in the edit menu: max, min and step size. A
relative slider means that the step size is expressed as a fraction of max-min.

4.4.5 Importing a parameter from a CSV file

After creating a parameter from the “Variable” drop-down in the “Insert” menu,
right-clicking the parameter and selecting the option to “Import CSV”, will open
a dialogue box that allows you to select a CSV file. Upon selecting the file, a
dialog is opened, allowing you to specify assorted encoding parameters.

An alternative is to click on the ImportData icon , which will create a
new parameter for you to import the data into.

The dialog looks somewhat like this:

Quick instructions:

• Data is typically rightmost columns. Click to set the top left cell of the
data. Columns to the left will be marked as axes.

• Select “axis” in the Dimension dropdown to include a column as an axis.
Column data turns blue.

• Select “ignore” in the Dimension dropdown to exclude a column. Column
data turns red.

• Select “data” in the Dimension dropdown to treat a column as a data
column. Column data turns black.

• Select Type for included axis columns. Select one of three types:

4.4. VARIABLES 61

string most general type, data treated as is.

value value data must be numerical and not quoted, e.g. 1, 2

time data must refer to date-time data. Format field may be used to
control interpretation of this data. Blank format assumes data con-
tains year/month/day/hour/minute/second separated by some non-
numerical character. If fewer than 6 numerical fields present, smallest
units are set to minimum value (0 or 1 respectively).

• Click OK button.

• Data is imported into the parameter.

• You may now need to set units for the imported data field, which is located
at Edit → Dimensions.

In the case shown above, the system has automatically guessed that the
data is 3 dimensional, and that the first 3 columns give the axis labels for each
dimension (shown in blue), and the 4th column contains the data. The first row
has been automatically determined to be the first row of the file — with the
dimension names are shown in green.

In this case, the automatic parsing system has worked things out correctly,
but often times it needs help from the computer user. An example is as follows:

In this example, Minsky has failed to determine where the data starts, prob-
ably because of the columns to the right of the “Price” columns. So the first
thing to do is tell it where the data is located by clicking on the first cell of the
data region.

62 CHAPTER 4. REFERENCE

Note that this causes all columns to the right of “Price paid” to be treated
as data, which is not right since the columns to the right of “Propieter” are text
based columns, not data. So we need to mark those columns as either “axis”
or “ignore”. To do that, select drag on the header field, which will cause those
columns to be selected, like so:

Then in the dimensions row, select “axis”, which flips the selected columns:

4.4. VARIABLES 63

Now the axes index labels are rendered in blue, the axes names in green and
the data is in black. In this example, some axes have unique values, which are
not particularly useful to scan over. Other examples might have columns that
duplicate others, in effect the data is a planar slice through the hypercube. We
can remove these axes from the data by marking the column “ignore” in the
“Dimension” row. The deselected columns are rendered in red, indicating data
that is commented out:

In this example, the axis names has not been correctly inferred. Whilst, one
can manually edit the axis names in the “Name” line, a quick shortcut is to
drag “Header” and drop it on “Name”. (Note the intention is for this to be the
case - currently each column name has to be set individually).

64 CHAPTER 4. REFERENCE

The Date column is current parsed as strings, which not only will be sorted
incorrectly, but even if the data were in a YYYYMMDD format which is sorted
correctly, will not have a uniform temporal spacing. It is therefore important
to parse the Date column as temporal data, which is achieved by changing the
column type to “time”, and specifying a format string, which follows strftime
conventions with the addition of a quarter specifier (%Q).

If your temporal data is in the form Y*M*D*H*M*S, where * signifies any
sequence of non-digit characters, and the year, month, day, hour minutes, second
fields are regular integers in that order, then it suffices to use the blank format
string . If some of the fields are missing, eg minutes and seconds, then they will
be filled in with sensible defaults.

Strftime formatted string consists of escape codes (with leading % charac-
ters). All other characters are treated as matching literally the characters of the

4.4. VARIABLES 65

Code Description
%a or %A The name of the day of the week according to the current locale, in abbreviated form or the full name.
%b or %B The month name according to the current locale, in abbreviated form or the full name.

%d Day of month in range 01 to 31
%H Hour in range 0 to 23
%I Hour in range 1 to 12
%m Month as a decimal number (01 to 12)
%M Minute in range 00 to 59
%Q Quarter (0=1st January, 1=1st March etc)
%p AM or PM
%s Number of seconds since epoch (1st January 1970)
%S Seconds in range 00 to 59
%y Two digit year YY
%Y Four digit year YYYY
%z numerical timezone offset
%Z Timezone name
%% Literal % character

Table 4.1: Table of strftime codes

input. So to match a date string of the format YYYY-MM-DD HH:MM:SS+ZZ
(ISO format), use a format string “%Y-%m-%d %H:%M:%S+%Z”. Similarly, for quar-
terly data expressed like 1972-Q1, use “%Y-Q%Q”. Note that only %Y and %y
can be mixed with %Q (nothing else makes sense anyway).

Even in the current settings, you may still get a message “exhausted memory
— try reducing the rank”, or a similar message about hitting a 20% of physical
memory threshold. In some cases, “titles” and “addresses” might be pretty much
unique for each record, leading to a large, but very sparse hypercube. If you
remove those columns, then you may encounter the “Duplicate key” message.
In this case, we want to aggregate over these records, which we can do by setting
“Duplicate Key Action” to sum or maybe average for this example. After some
additional playing around with dimensions to aggregate over, we can get the
data imported.

66 CHAPTER 4. REFERENCE

4.4.6 Duplicate keys

In a hypercube, data is indexed by a list of indices, collectively known as a
key. The indices may be strings, integers or date/time values. If more than one
value exists in the CSV file for a given key, Minsky throws a “Duplicate key”
exception. This exception gives you the option of writing a report, which is
basically a sorted version of the original CSV file, with the errors listed at the
beginning. You can open this report in a spreadsheet to see if data needs to be
corrected or removed.

In the case where the data is correct, but there are still duplicate keys, such
as the example in the previous section, the duplicate keys may be aggregated
over by setting the “Duplicate Key action” option.

4.4.7 Variable Browser

The variable browser is a popup window that shows all currently defined vari-
ables in the system. This is a convenience toolbar that allows one to select a
variable for insertion into the design canvas, instead of having to type the new
variable’s name from scratch.

At the top of the variable browser are some filter checkboxes, that allow you
filter the variables shown by variable type.

4.5 Wires

Wire represent the flow of values from one operation to the next. To add a wire
to the canvas, click on the output port of an operation or variable (right hand
side of the icon in its initial unrotated orientation), and then drag it towards
an input port (on the left hand side of an unrotated icon). You can’t connect
an operator to itself (that would be a loop, which is not allowed, unless passing

4.6. TENSOR VALUES 67

through an integral), nor can an input port have more than one wire attached,
with the exception of +/− and ×/÷, where the multiple wires are summed or
multiplied, respectively, and similarly max/min.

Wires can be bent by dragging the blue dots (“handles”). Every time a
handle is dragged out of a straight line with its neighbours, new handles appear
on either side. Handles can be removed by double-clicking on them.

4.6 Tensor values

Variables may have tensor values, or sets of data. Different tensors are sorted
by rank. For example, a tensor of rank 0 may appear as a single number, let’s
refer to it as x. A tensor of rank 1 may appear as a sequence of numbers, let’s
say (xxxx). Rank 2 means a tensor appears as a 2D sequence of numbers, for
example:  x x x

x x x
x x x


A tensor of rank 3 will appear as a three-dimensional cube, rank 4 as a

four-dimensional hypercube, and so on. Two ways of getting tensor values
into Minsky are via tensor-valued initial conditions (§4.4.3), or by importing a
CSV file into a parameter (§4.4.5). Scalar operations are extended to operating
elementwise over tensors, and a number of operations exist for operating on
tensors (§4.2).

When two or more tensors are combined with a binary operation (such as
addition or multiplication), they must have the same rank. For example, two
tensors of rank 2 can be multiplied together, but a tensor of rank 2 and a tensor
of rank 3 cannot. They may have differing dimensions, which means the values
within each tensor may not necessarily match up 1-to-1 exactly. To understand
what happens when a given dimension is mismatched requires understanding
the concept of an x-vector.

When Minsky is given tensor values, it sorts the values within each tensor by
corresponding dimensions. For example, a rank 2 tensor would have its values
sorted into two sets of data. This data can be in the form of numbers, dates
(time values), or strings. Minsky will then look at cross-sections of the datasets
in order to process the values within. When the dimensions of two tensors
match up, for example two rank 2 tensors, the corresponding cross-sections of
both tensors should also match up. When they don’t, a weighted interpolation
of the corresponding values is taken. This involves using an x-vector.

An x-vector is a vector of real values, strings or date/time values. If no
x-vector is explicitly provided, then implicitly it consists of the the values
(0, . . . , ni − 1), where ni is the dimension size of axis i of the tensor.

For example, if the first tensor consists of three elements (x0, x1, x2) and the
second consist of a number of different elements that roughly correspond to the
same three elements, these can be added together. The x-vector starts with the

68 CHAPTER 4. REFERENCE

first tensor’s value of (x0) and looks for a matching value in the second tensor.
If it can’t find a direct match, it will search for nearby values which roughly
correspond. It can then take those values and interpolate the corresponding
value based on where in the tensor it appears. This is weighted, so say there are
four values nearby, the program will average those out and find where a value
in the middle of those four values would appear, and what that hypothetical
value would be. To take another example:

Suppose the first tensor was a vector (x0, x1) and had an x-vector (1,3) and
the second tensor (y0, y1, y2) had an x-vector (0,2,3), then the resulting tensor
will be (x0 + 0.5(y0 + y1), x1 + y2). If the x-vector were date/time data, then
the tensor values will be interpolated according to the actual time values. If
the first tensor’s x-vector value lies outside the second tensor’s x-vector, then it
doesn’t result in a value being included in the output. The resultant x-vector’s
range of values is the intersection of input tensors’ x-vector ranges.

If both tensor had string x-vectors, then the resultant tensor will only have
values where both input tensors have the same string value in their x-vectors.
In the above case, where the x-vectors were (’1’,’3’) and (’0’,’2’,’3’) the resulting
tensor will be the scalar x1 + y2.

It goes without saying that the type of the x-vector for each axis must also
match.

4.7 Groups

Grouping gives the capability to create reusable modules, or subroutines that
can dramatically simplify more complicated systems. Groups may be created
in the following ways:

• by lassoing a number of items to select them, then selecting “group” from
the canvas context menu, or the edit menu.

• by pasting the selection. You may “ungroup” the group from the context
menu if you don’t desire the result of the paste to be a group.

• by copying another group

• by inserting a Minsky file as a group

Zooming in on a group allows you see and edit its contents. Groups may
be nested heirarchically, which gives an excellent way of zooming in to see the
detail of a model, or zooming out to get an overview of it. The group context
menu item “Zoom to display” zooms the canvas in just enough for the group’s
contents to be visible.

You may also select “Open in canvas” from the context menu. This replaces
the current canvas contents with the contents of the group, allowing you to edit
the contents of the group directly without the distractions of the rest of the
model. Select “Open master group” to return to the top level group occupying
the canvas.

4.8. PLOT WIDGET 69

Around the edges of a group are input or output variables, which allow one
to parameterise the group. One can drag a variable and dock it in the I/O area
to create a new input or output for the group.

When creating a group, or dragging a variable or operation into or out of a
group, if a wire ends up crossing the group boundary, a new temporary variable
is added as an I/O variable. You may then edit the I/O variable name to be
something more meaningful to your model.

Variable names within groups can be locally scoped to that group. That
means that a variable of the same name outside the group refers to a different
entity completely. By default, grouped variables refer to entities outside the
group scope, but may be marked local by means of context menu option. One
can also convert all variables in a group to be local by means of the “Make
subroutine” context menu entry.

Nonlocal variables refers to a local variable within an outer scope, going all
the way to global scope if no such variable exists. In this way, two groups can
share a variable reference to a variable, and you can limit the scope of the shared
variable by placing a local variable of the same name in an outer group that
both groups are contain within.

A group can also be exported to a file from the context menu. This allows
you to build up a library of building blocks. There is a github project “minsky-
models” allowing people to publish their building blocks and models for others
to use. In the future, we hope to integrate Minsky with this github repository,
allowing even more seamless sharing of models.

4.8 Plot widget

A plot widget embeds a dynamic plot into the canvas. Around the outside of
the plot are a number of input ports that can be wired.

x 0.1

-10 -8 -6 -4 -2 0 2 4 6 8

x 0.1

-8

-6

-4

-2

0

2

4

6

8

left hand edge Up to 4 quantities can be plotted on the graph simultaneously,
with line colour given by the colour of the input port

70 CHAPTER 4. REFERENCE

right hand edge Another 4 quantities can be added to the plot. These are
shown on a different scale to the left hand inputs, allowing very different
magnitudes to be compared on the one plot.

bottom edge Quantities controlling the x-coordinates of the curves. The
colours match up with the colour of the pen being controlled.

3

t
sin

cos

x 0.1

-10 -5 0 5 10 15

x 0.1

-10

-5

0

5

10

If only one bottom port is connected, then that controls all pens simulta-
neously, and if no ports are connected, then the simulation time is used
to provide the x coordinates

corners Corner ports control the scale. You can wire up variables controlling
minimum and maximum of the x, y and right hand y axes. If left unwired,
the scales are determined automatically from the data. This can be used,
for example, to implement a sliding window graph

4.9. SHEET WIDGET 71

5

1

t sin

t

x 1

35 36 37 38 39 40

x 0.1

-10

-5

0

5

10

4.9 Sheet Widget

The Sheet widget displays input data as a number, rather than as a 2D graph, as
in the case of the plot widget. To use the Sheet widget, simply wire a variable
or other item on your canvas to the left-hand side of the sheet widget box.
This will diplay the input data as a number. Note that only one wire can be
connected to a sheet, as the sheet can only display a single input value.

The sheet widget can also display rank 0, 1 and rank 2 tensors. These ranks
are single values, a string of values, or a 2D matrix of values, respectively. For
example, if you create a parameter, and set the initial condition to rand(3,5)
(for reference, see section (§4.4.3)), you can wire that into a sheet. The sheet
will then diplay the data in a grid display within the widget box.

If you have Ravel™ installed, you will see a small Ravel icon in the top left cor-
ner. Clicking this causes a ravel window to pop up, allowing you to manipulate
the input data to the sheet, so as to change slices or rotate a multidimensional
datacube.

4.10 Note Widget

Notes allow arbitrary text to be placed on the canvas for explanatory purposes.
Anything that can be entered on the keyboard can be placed here, including

72 CHAPTER 4. REFERENCE

unicode characters, and LaTeX formatting is supported. A note widget, like all
canvas items, allow short additional tooltips to be specified. It is also possible
to annotate an ordinary block with some text that is accessed through the edit
menu, or as a tooltip.

You may also use a note as bookmark anchor by ticking the appropriate
checkbox.

4.11 Godley Tables

Godley tables describes sets of financial flows from the point of view of a particu-
lar economic agent, such as a bank. The columns of the table represent accounts
(possibly aggregated), which are treated as integration variables by the system.
Accounts may be assets, liabilities or equities. Assets may appear as liabilities
in another agent’s Godley table, and vice versa, with the sense of the financial
flows treated oppositely (a credit flow increasing the asset of one entity will
appear as a debit flow, increasing the value of a liability). Transfers between ac-
counts should satisfy the accounting equation (Assets-Liabilities-Equities = 0).
So if the transfer is between an asset and a liability, then it should appear with
the same sign (both positive or both negative), otherwise between two accounts
of the same type, or between a liability and an equity, the terms should have
opposite signs.

Instead of signed flows, one can optionally use CR and DR prefixes, as
specified in the options panel. Each row of the table should have have one CR
entry, and one DR entry. The row sum column should be zero if it is done
correctly.

The first row specifies the stock variables, after which follow the flow rows.
Usually, the row marked “Initial Conditions” comes next, but may be placed
in any position. These specify the initial conditions of the stock variables, and
may refer to a multiple of another variable, just like the initial condition field,
or just be a numerical value.

Finally come the flows. The first column is a simple textual label (the phrase
“Initial Conditions”, regardless of capitalisation, is a reserved phrase for setting
stock variable initial conditions) identifying the flow. The flows themselves
are written as a numerical multiplier times a flow variable. For example, if you
wanted to transfer an amount between the asset and liability column, you might
write “Amount” in both columns, which would satisfy the equation A-L-E=0.
It would also be possible to write “2Amount” in the asset column, along with
“Amount” in both the Liability and Equity columns. This would still satisfy
A-L-E=0.

The Godley table also shows the value of the entered variable, displayed
within the table. For example, if you set “Amount” to equal the value of system
time, on opening the Godley table, wherever you entered “Amount” in the table
the cell would show “Amount = 0.00” if the system time was set to 0.00. This
provides a helpful tool for displaying the value of the variable at that point in
the simulation. This feature can be enabled or disabled in the preferences panel.

4.12. CONTEXT MENU 73

4.12 Context Menu

All canvas items have a context menu, which allow a variety of operations to be
applied to the canvas item. Common context menu items are explained here:

Help bring up context specific help for the item

Description Attach an annotation to the item. This is only visible by selecting
the description item from the context menu, although whatever is set as
the “Short Description” will also appear as a tooltip whenever the mouse
hovers over the item.

Port values When running a simulation, you can drill down into the actual
values at the input and output ports of the variable or operation, which
is a useful aid for debugging models.

Edit set or query various attributes of an item. This function can also be
accessed by double clicking on the item. (Plot widgets behave slightly
differently).

Copy Creates a copy of an item, retaining the same attributes of the original.
This is very useful for creating copies of the same variable to reduce the
amount of overlapping wiring (aka “rats nest”) in a model.

Flip actually rotates an object through 180◦. You can specify aribtrary rota-
tions of objects through the edit menu.

Delete delete the object.

Item specific context menu items:

variables, parameters and constants

Local Make the variable’s scope local to its group

Find definition Place a red circle on the variable that defines its value.

Select all instances Select all instances of this variable

Rename all instance Do a global search and replace of this variable
name with a new name.

Export as CSV Export the current variable’s value as a CSV file. Ob-
viously only really useful when the variable contains a tensor

Add integral attach an integration operation, and convert the variable
into an integral type

integrals

Copy Var copy just the integration variable, not the integration opera-
tion

74 CHAPTER 4. REFERENCE

Toggle Var Binding Normally, integrals are tightly bound to their vari-
ables. By toggling the binding, the integral icon can then be moved
independently of the variable it is bound to.

Godley tables

Open Godley Table opens a spreadsheet to allow financial flows defin-
ing the Godley table to be entered or modified.

Resize Godley Table allows the icon to be resized.

Edit/Copy var allows individual stock and flow variables to be copied
or edited.

Export to file export table contents as either CSV data, or as a LaTeX
table, for import into other software.

Groups

Zoom to Display Zoom the canvas sufficiently to see the contents of the
group.

Resize Resize the group icon on the canvas.

Save group as Save the group in it’s own Minsky file.

Flip contents Rotate each item within the group by 180◦

Ungroup Ungroup the group, leaving it’s contents as icons on the canvas.

contentBounds Draws a box on the canvas indicating the smallest bound-
ing box containing the group items.

Plot Widgets

Expand By double-clicking, or selecting “Expand” from the context menu,
a popup window is created of the plot, which can be used examine
the plotting in more detail.

Resize Allows you to resize the plot icon on the canvas

Options Customize the plot by adding a title, axes labels and control
the number of axis ticks and grid lines on the detailed plot. You can
also add a legend, which is populated from the names of variables
attached to the plot.

4.13 Canvas background and keyboard short-
cuts

The canvas is not simply an inert place for the canvas items to exist. There is
also a background context menu, giving access to the edit menu functionality
such as cut/copy/paste, and also keyboard entry.

4.14. DIMENSIONAL ANALYSIS 75

Special keys:
F1 context sensitive help

Shift enter panning mode
←,→, ↑, ↓ adjust sliders, adjust Ravel slicers

The following keystrokes insert an operation
+ add
- subtract
* multiply
/ divide
^ pow
% percent operator
& integral
= Godley table
@ plot
start a text comment, finish with return

Typing any other character, then return will insert an operation (if the name
matches), or otherwise a variable with that name.

4.14 Dimensional Analysis

Dimensional analysis is the idea of attaching units of measurement (eg metre or
second) to the quantities being computed. It provides an additional constraint
that the system must satisfy, reducing the chance of wiring errors. Two different
units being added together will throw up an error - you cannot add 2 metres
to 3 kilograms. But it should be possible add 2 metres to 3 feet, and get the
correct answer. You may need to explicitly add a multiply operation to convert
from one unit to another, for example, dividing the 3 feet by 3.281 before adding
it to the 2 metres, providing a total of 2.914 meters.

Using Dimensional Analysis in Minsky
To attach units to quantities in Minsky, you use the units field of the vari-

able/parameters/constants edit dialog box. Each word typed in this box de-
scribes a separate unit. “ˆ” followed by an integer is used to represent a power.
Finally, a single “/” indicates that the following units are on the denomina-
tor, dividing the first set of units by the second. So to represent the unit of
acceleration, you can equivalently type all of the following:

• m/s^2

• m/s s

• m/s^-2

Or spelling it out in full:

• metre/second^2

• metre second^-2

• metre / second second

76 CHAPTER 4. REFERENCE

Note that metre and m are distinctly different units in Minsky.
Note – setting the time dimension is done in the simulation menu
Consider the network introduced in the New to System Dynamics section

of the Minsky manual. For GDP, one could enter $/year for the units. Labor
Productivity should be expressed in terms of $ per person year. If the system
does not accept $/person year, you can enter this as $ person^-1 year^-1.
Finally, Population has units of person. Press reset, and the Workers variable
automatically has units of person, and EmpRate is dimensionless.

All function objects require dimensionless inputs. You can use dimensional
analysis to prevent incorrectly feeding a degree measurement into a sin, by
requiring them to be multiplied by a radiansPerDegree parameter.

4.15 Bookmarks

Bookmarks are a useful feature for saving the current position and zoom of the
canvas, to be able to come back to that part of the canvas later. This helps
managing more complicated models. To create a new bookmark, click on the
“Bookmark” tab in the top left-hand corner (in-between “Edit” and “Insert”)
and select “Bookmark this position”. The program will provide a dialogue
box to enter in a name for the new bookmark. After creating the bookmark,
all user-created bookmarks can be seen in the Bookmarks menu. To delete
a bookmark, simply select “Delete” from the Bookmarks menu and select the
desired bookmark. To open an existing bookmark, select one from the menu.

You may also create a bookmark from any item on the canvas by selecting
the bookmark checkbox in the “description” dialog.

4.16 Ravel

Ravel is a skunkworks project enabling the interactive manipulation of multi-
dimensional datacubes. This is a commercial technology, and you will need a
license to use the software, as well as a copy of the Ravel plugin. This is still
under active development, but you can read some more about it at Ravelation.

The Lock widget is used to fix the output of a Ravel at a particular point in
time, making it easy to compare two different ravel settings.

https://ravelation.hpcoders.com.au

Chapter 5

User defined functions

Much of this chapter is exerpted from exprtk’s read.txt file

5.1 Introduction

The C++ Mathematical Expression Toolkit Library (ExprTk) is a simple to
use, easy to integrate and extremely efficient run-time mathematical expression
parsing and evaluation engine. The parsing engine supports numerous forms of
functional and logic processing semantics and is easily extensible.

With Minsky’s user defined functions, expressions can refer to Minsky vari-
ables accessible from the current scope (ie local Minsky variables will hide global
variables), and also parameters declared as part of the function name. One can
also call other user defined functions, which is the only way a user defined func-
tion with more than 2 parameters can be used. For 0-2 parameters, user defined
functions can be wired into a Minsky computation.

ExprTk identifiers (such as variable names and function names) consist of
alphanumeric characters plus ’ ’ and ’.’. They must start with a letter. Minsky
is reserving the underscore and full stop to act as an escape sequence, in order
to refer to the full range of possible Minsky variable identifiers, including all
unicode characters. This section will be updated once that feature is in place
— for now, please avoid using those characters in identifiers.

5.2 Capabilities

The ExprTk expression evaluator supports the following fundamental arithmetic
operations, functions and processes:

Types: Scalar, Vector, String

Basic operators: +, -, *, /, %, ^

Assignment: :=, +=, -=, *=, /=, %=

77

https://github.com/ArashPartow/exprtk/blob/master/readme.txt
https://www.partow.net/programming/exprtk/index.html

78 CHAPTER 5. USER DEFINED FUNCTIONS

Equalities & Inequalities: =, ==, <>, !=, <, <=, >, >=

Logic operators: and, mand, mor, nand, nor, not, or, shl, shr, xnor, xor, true,
false

Functions: abs, avg, ceil, clamp, equal, erf, erfc, exp, expm1, floor, frac, log,
log10, log1p, log2, logn, max, min, mul, ncdf, nequal, root, round, roundn,
sgn, sqrt, sum, swap, trunc

Trigonometry: acos, acosh, asin, asinh, atan, atanh, atan2, cos, cosh, cot,
csc, sec, sin, sinc, sinh, tan, tanh, hypot, rad2deg, deg2grad, deg2rad,
grad2deg

Control structures: if-then-else, ternary conditional, switch-case, return-statement

Loop statements: while, for, repeat-until, break, continue

String processing: in, like, ilike, concatenation

Optimisations: constant-folding, simple strength reduction and dead code
elimination

Calculus: numerical integration and differentiation

5.3 Example expressions

The following is a short listing of infix format based mathematical expressions
that can be parsed and evaluated using the ExprTk library.

• sqrt(1 - (3 / x^2))

• clamp(-1, sin(2 * pi * x) + cos(y / 2 * pi), +1)

• sin(2.34e-3 * x)

• if(((x[2] + 2) == 3) and ((y + 5) <= 9),1 + w, 2 / z)

• inrange(-2,m,+2) == if(({-2 <= m} and [m <= +2]),1,0)

• ({1/1}*[1/2]+(1/3))-{1/4}^[1/5]+(1/6)-({1/7}+[1/8]*(1/9))

• a * exp(2.2 / 3.3 * t) + c

• z := x + sin(2.567 * pi / y)

• u := 2.123 * {pi * z} / (w := x + cos(y / pi))

• 2x + 3y + 4z + 5w == 2 * x + 3 * y + 4 * z + 5 * w

• 3(x + y) / 2.9 + 1.234e+12 == 3 * (x + y) / 2.9 + 1.234e+12

• (x + y)3.3 + 1 / 4.5 == [x + y] * 3.3 + 1 / 4.5

5.4. COPYRIGHT NOTICE 79

• (x + y[i])z + 1.1 / 2.7 == (x + y[i]) * z + 1.1 / 2.7

• (sin(x / pi) cos(2y) + 1) == (sin(x / pi) * cos(2 * y) + 1)

• 75x^17 + 25.1x^5 - 35x^4 - 15.2x^3 + 40x^2 - 15.3x + 1

• (avg(x,y) <= x + y ? x - y : x * y) + 2.345 * pi / x

• while (x <= 100) { x -= 1; }

• x <= ’abc123’ and (y in ’AString’) or (’1x2y3z’ != z)

• ((x + ’abc’) like ’*123*’) or (’a123b’ ilike y)

• sgn(+1.2^3.4z / -5.6y) <= {-7.8^9 / -10.11x }

5.4 Copyright notice

Free use of the C++ Mathematical Expression Toolkit Library is permitted
under the guidelines and in accordance with the most current version of the
MIT License

http://www.opensource.org/licenses/MIT

80 CHAPTER 5. USER DEFINED FUNCTIONS

5.5 Built-in operations & functions

5.5.1 Arithmetic & Assignment Operators

OPERATOR DEFINITION
+ Addition between x and y. (eg: x + y)
- Subtraction between x and y. (eg: x - y)
* Multiplication between x and y. (eg: x * y)
/ Division between x and y. (eg: x / y)
% Modulus of x with respect to y. (eg: x % y)
^ xy. (eg: x ^ y)
:= Assign the value of x to y. Where y is either a variable or vector

type. (eg: y := x)
+= Increment x by the value of the expression on the right hand

side. Where x is either a variable or vector type. (eg:
x += abs(y - z))

-= Decrement x by the value of the expression on the right hand
side. Where x is either a variable or vector type. (eg:
x[i] -= abs(y + z))

*= Assign the multiplication of x by the value of the expression on
the righthand side to x. Where x is either a variable or vector
type. (eg: x *= abs(y / z))

/= Assign the division of x by the value of the expression on the
right-hand side to x. Where x is either a variable or vector type.
(eg: x[i + j] /= abs(y * z))

%= Assign x modulo the value of the expression on the right hand
side to x. Where x is either a variable or vector type. (eg:
x[2] %= y ^ 2)

5.5.2 Equalities & Inequalities

OPERATOR DEFINITION
== or = True only if x is strictly equal to y. (eg: x == y)
<> or != True only if x does not equal y. (eg: x <> y or x != y)

< True only if x is less than y. (eg: x < y)
<= True only if x is less than or equal to y. (eg: x <= y)
> True only if x is greater than y. (eg: x > y

>= True only if x greater than or equal to y. (eg: x >= y)

5.5. BUILT-IN OPERATIONS & FUNCTIONS 81

5.5.3 Boolean Operations

OPERATOR DEFINITION
true True state or any value other than zero (typically 1).
false False state, value of exactly zero.
and Logical AND, True only if x and y are both true. (eg: x and y)
mand Multi-input logical AND, True only if all inputs are

true. Left to right short-circuiting of expressions. (eg:
mand(x > y, z < w, u or v, w and x))

mor Multi-input logical OR, True if at least one of the inputs
are true. Left to right short-circuiting of expressions. (eg:
mor(x > y, z < w, u or v, w and x))

nand Logical NAND, True only if either x or y is false. (eg: x nand y)
nor Logical NOR, True only if the result of x or y is false (eg:

x nor y)
not Logical NOT, Negate the logical sense of the input. (eg:

not(x and y) == x nand y)
or Logical OR, True if either x or y is true. (eg: x or y)
xor Logical XOR, True only if the logical states of x and y differ.

(eg: x xor y)
xnor Logical XNOR, True iff the biconditional of x and y is satisfied.

(eg: x xnor y)
& Similar to AND but with left to right expression short circuiting

optimisation. (eg: (x & y) == (y and x))
| Similar to OR but with left to right expression short circuiting

optimisation. (eg: (x | y) == (y or x))

82 CHAPTER 5. USER DEFINED FUNCTIONS

5.5. BUILT-IN OPERATIONS & FUNCTIONS 83

5.5.4 General Purpose Functions

FUNCTION DEFINITION
abs Absolute value of x. (eg: abs(x))
avg Average of all the inputs. (eg:

avg(x,y,z,w,u,v) == (x + y + z + w + u + v) / 6)
ceil Smallest integer that is greater than or equal to x.
clamp Clamp x in range between r0 and r1, where r0 ¡ r1. (eg:

clamp(r0,x,r1))
equal Equality test between x and y using normalised epsilon
erf Error function of x. (eg: erf(x))
erfc Complimentary error function of x. (eg: erfc(x))
exp ex (eg: exp(x))
expm1 ex−1 where x is very small. (eg: expm1(x))
floor Largest integer that is less than or equal to x. (eg: floor(x))
frac Fractional portion of x. (eg: frac(x))

hypot
√
x2 + y2 (eg: hypot(x,y) = sqrt(x*x + y*y))

iclamp Inverse-clamp x outside of the range r0 and r1. Where r0 ¡ r1.
If x is within the range it will snap to the closest bound. (eg:

iclamp(r0,x,r1) =

 r0 if x ≤ r0
x if r0 ≤ x ≤ r1
r1 if x ≥ r1

)

inrange In-range returns ’true’ when x is within the range [r0, r1]. Where
r0 < r1. (eg: inrange(r0,x,r1))

log Natural logarithm lnx. (eg: log(x))
log10 log10 x. (eg: log10(x))
log1p ln(1 + x), where x is very small. (eg: log1p(x))
log2 log2 x. (eg: log2(x))
logn logn x, where n is a positive integer. (eg: logn(x,8))
max Largest value of all the inputs. (eg: max(x,y,z,w,u,v))
min Smallest value of all the inputs. (eg: min(x,y,z,w,u))
mul Product of all the inputs. (eg:

mul(x,y,z,w,u,v,t) == (x * y * z * w * u * v * t))
ncdf Normal cumulative distribution function. (eg: ncdf(x))
nequal Not-equal test between x and y using normalised epsilon
pow xy. (eg: pow(x,y) == x ^ y)
root n

√
x, where n is a positive integer. (eg: root(x,3) == x^(1/3))

round Round x to the nearest integer. (eg: round(x))
roundn Round x to n decimal places (eg: roundn(x,3)) where n > 0 is

an integer. (eg: roundn(1.2345678,4) == 1.2346)
sgn Sign of x, −1 where x < 0, +1 where x > 0, else zero. (eg:

sgn(x))
sqrt

√
x, where x >= 0. (eg: sqrt(x))

sum Sum of all the inputs. (eg:
sum(x,y,z,w,u,v,t) == (x + y + z + w + u + v + t))

swap

<=> Swap the values of the variables x and y and return the current
value of y. (eg: swap(x,y) or x <=> y)

trunc Integer portion of x. (eg: trunc(x))

84 CHAPTER 5. USER DEFINED FUNCTIONS

5.5.5 Trigonometry Functions

FUNCTION DEFINITION
acos Arc cosine of x expressed in radians. Interval [−1,+1] (eg:

acos(x))
acosh Inverse hyperbolic cosine of x expressed in radians. (eg:

acosh(x))
asin Arc sine of x expressed in radians. Interval [−1,+1] (eg:

asin(x))
asinh Inverse hyperbolic sine of x expressed in radians. (eg:

asinh(x))
atan Arc tangent of x expressed in radians. Interval [−1,+1] (eg:

atan(x))
atan2 Arc tangent of (x/y) expressed in radians. [−π,+π] (eg:

atan2(x,y))
atanh Inverse hyperbolic tangent of x expressed in radians. (eg:

atanh(x))
cos Cosine of x. (eg: cos(x))
cosh Hyperbolic cosine of x. (eg: cosh(x))
cot Cotangent of x. (eg: cot(x))
csc Cosecant of x. (eg: csc(x))
sec Secant of x. (eg: sec(x))
sin Sine of x. (eg: sin(x))
sinc Sine cardinal of x. (eg: sinc(x))
sinh Hyperbolic sine of x. (eg: sinh(x))
tan Tangent of x. (eg: tan(x))
tanh Hyperbolic tangent of x. (eg: tanh(x))

deg2rad Convert x from degrees to radians. (eg: deg2rad(x))
deg2grad Convert x from degrees to gradians. (eg: deg2grad(x))
rad2deg Convert x from radians to degrees. (eg: rad2deg(x))
grad2deg Convert x from gradians to degrees. (eg: grad2deg(x))

5.5. BUILT-IN OPERATIONS & FUNCTIONS 85

5.5.6 String Processing

FUNCTION DEFINITION
= , ==, !=, <>, <=, >=, < , > All common equality/inequality operators are applicable to

strings and are applied in a case sensitive manner. In
the following example x, y and z are of type string. (eg:
not((x <= ’AbC’) and (’1x2y3z’ <> y)) or (z == x))

in True only if x is a substring of y. (eg: x in y or
’abc’ in ’abcdefgh’)

like True only if the string x matches the pattern y. Available
wildcard characters are ‘*’ and ‘?’ denoting zero or more
and zero or one matches respectively. (eg: x like y or
’abcdefgh’ like ’a?d*h’)

ilike True only if the string x matches the pattern y in a case in-
sensitive manner. Available wildcard characters are ’*’ and ’?’
denoting zero or more and zero or one matches respectively. (eg:
x ilike y or ’a1B2c3D4e5F6g7H’ ilike ’a?d*h’)

[r0:r1] The closed interval [r0, r1] of the specified string. eg: Given a
string x with a value of ’abcdefgh’ then:

1. x[1:4] == ’bcde’

2. x[:5] == x[:10 / 2] == ’abcdef’

3. x[2 + 1:] == x[3:] ==’defgh’

4. x[:] == x[:] == ’abcdefgh’

5. x[4/2:3+2] == x[2:5] == ’cdef’

Note: Both r0 and r1 are assumed to be integers, where r0 ¡=
r1. They may also be the result of an expression, in the event
they have fractional components truncation will be performed.
(eg: 1.67→ 1)

86 CHAPTER 5. USER DEFINED FUNCTIONS

FUNCTION DEFINITION
:= Assign the value of x to y. Where y is a mutable string or string

range and x is either a string or a string range. eg:

1. y := x

2. y := ’abc’

3. y := x[:i + j]

4. y := ’0123456789’[2:7]

5. y := ’0123456789’[2i + 1:7]

6. y := (x := ’0123456789’[2:7])

7. y[i:j] := x

8. y[i:j] := (x + ’abcdefg’[8 / 4:5])[m:n]

Note: For options 7 and 8 the shorter of the two ranges will
denote the number characters that are to be copied.

+ Concatenation of x and y. Where x and y are strings or string
ranges. eg

1. x + y

2. x + ’abc’

3. x + y[:i + j]

4. x[i:j] + y[2:3] + ’0123456789’[2:7]

5. ’abc’ + x + y

6. ’abc’ + ’1234567’

7. (x + ’a1B2c3D4’ + y)[i:2j]

+= Append to x the value of y. Where x is a mutable string and y
is either a string or a string range. eg:

1. x += y

2. x += ’abc’

3. x += y[:i + j] + ’abc’

4. x += ’0123456789’[2:7]

<=> Swap the values of x and y. Where x and y are mutable strings.
(eg: x <=> y)

5.5. BUILT-IN OPERATIONS & FUNCTIONS 87

FUNCTION DEFINITION
[] The string size operator returns the size of the string being

actioned. eg:

1. ’abc’[] == 3

2. var max_str_length := max(s0[],s1[],s2[],s3[]

3. (’abc’ + ’xyz’)[] == 6

4. ((’abc’ + ’xyz’)[1:4])[] == 4

88 CHAPTER 5. USER DEFINED FUNCTIONS

5.5. BUILT-IN OPERATIONS & FUNCTIONS 89

5.5.7 Control Structures

STRUCTURE DEFINITION
if If x is true then return y else return z.eg:

1. if (x, y, z)

2. if ((x + 1) > 2y, z + 1, w / v)

3. if (x > y) z;

4. if (x <= 2*y) { z + w };

if-else The if-else/else-if statement. Subject to the condition branch
the statement will return either the value of the consequent or
the alternative branch. eg:

1. if (x > y) z; else w;

2. if (x > y) z; else if (w != u) v;

3. if (x < y) { z; w + 1; } else u;

4. if ((x != y) and (z > w))

{

y := sin(x) / u;

z := w + 1;

}

else if (x > (z + 1))

{

w := abs (x - y) + z;

u := (x + 1) > 2y ? 2u : 3u;

}

switch The first true case condition that is encountered will determine
the result of the switch. If none of the case conditions hold true,
the default action is assumed as the final return value. This is
sometimes also known as a multi-way branch mechanism. eg:

switch

{

case x > (y + z) : 2 * x / abs(y - z);

case x < 3 : sin(x + y);

default : 1 + x;

}

while The structure will repeatedly evaluate the internal statement(s)
’while’ the condition is true. The final statement in the final
iteration will be used as the return value of the loop. eg:

while ((x -= 1) > 0)

{

y := x + z;

w := u + y;

}

90 CHAPTER 5. USER DEFINED FUNCTIONS

FUNCTION DEFINITION
repeat/until The structure will repeatedly evaluate the internal statement(s)

’until’ the condition is true. The final statement in the final
iteration will be used as the return value of the loop. eg:

repeat

y := x + z;

w := u + y;

until ((x += 1) > 100)

for The structure will repeatedly evaluate the internal statement(s)
while the condition is true. On each loop iteration, an ’incre-
menting’ expression is evaluated. The conditional is manda-
tory whereas the initialiser and incrementing expressions are
optional. eg:

for (var x := 0; (x < n) and (x != y); x += 1)

{

y := y + x / 2 - z;

w := u + y;

}

break/break[] Break terminates the execution of the nearest enclosed loop,
allowing for the execution to continue on external to the loop.
The default break statement will set the return value of the loop
to NaN, where as the return based form will set the value to that
of the break expression. eg:

while ((i += 1) < 10)

{

if (i < 5)

j -= i + 2;

else if (i % 2 == 0)

break;

else

break[2i + 3];

}

continue Continue results in the remaining portion of the nearest enclos-
ing loop body to be skipped. eg:

for (var i := 0; i < 10; i += 1)

{

if (i < 5)

continue;

j -= i + 2;

}

5.5. BUILT-IN OPERATIONS & FUNCTIONS 91

FUNCTION DEFINITION
return Return immediately from within the current expression. With

the option of passing back a variable number of values (scalar,
vector or string). eg:

1. return [1];

2. return [x, ’abx’];

3. return [x, x + y,’abx’];

4. return [];

5. if (x < y)

return [x, x - y, ’result-set1’, 123.456];

else

return [y, x + y, ’result-set2’];

?: Ternary conditional statement, similar to that of the above de-
noted if-statement. eg:

1. x ? y : z

2. x + 1 > 2y ? z + 1 : (w / v)

3. min(x,y) > z ? (x < y + 1) ? x : y : (w * v)

~ Evaluate each sub-expression, then return as the result the value
of the last sub-expression. This is sometimes known as multiple
sequence point evaluation. eg:

~(i := x + 1, j := y / z, k := sin(w/u)) == (sin(w/u)))

~{i := x + 1; j := y / z; k := sin(w/u)} == (sin(w/u)))

[*] Evaluate any consequent for which its case statement is true.
The return value will be either zero or the result of the last
consequent to have been evaluated. eg:

[*]

{

case (x + 1) > (y - 2) : x := z / 2 + sin(y / pi);

case (x + 2) < abs(y + 3) : w / 4 + min(5y,9);

case (x + 3) == (y * 4) : y := abs(z / 6) + 7y;

}

[] The vector size operator returns the size of the vector being
actioned. eg:

1. v[]

2. max_size := max(v0[],v1[],v2[],v3[])

92 CHAPTER 5. USER DEFINED FUNCTIONS

Note: In the tables above, the symbols x, y, z, w, u and v where appropriate
may represent any of one the following:

1. Literal numeric/string value

2. A variable

3. A vector element

4. A vector

5. A string

6. An expression comprised of [1], [2] or [3] (eg: 2 + x /vec[3])

5.6 Fundamental types

ExprTk supports three fundamental types which can be used freely in expres-
sions. The types are as follows:

Scalar Type The scalar type is a singular numeric value. The underlying
type is that used to specialise the ExprTk components (float, double, long
double, MPFR et al).

Vector Type The vector type is a fixed size sequence of contiguous scalar
values. A vector can be indexed resulting in a scalar value. Operations
between a vector and scalar will result in a vector with a size equal to that
of the original vector, whereas operations between vectors will result in a
vector of size equal to that of the smaller of the two. In both mentioned
cases, the operations will occur element-wise.

String Type The string type is a variable length sequence of 8-bit chars.
Strings can be assigned and concatenated to one another, they can also
be manipulated via sub-ranges using the range definition syntax. Strings
however can not interact with scalar or vector types.

Chapter 6

Introduction

6.1 New to system dynamics?

Minsky is one of a family of “system dynamics” computer programs. These
programs allow a dynamic model to be constructed, not by writing mathematical
equations or numerous lines of computer code, but by laying out a model of a
system in a block diagram, which can then simulate the system. These programs
are now the main tool used by engineers to design complex products, ranging
from small electrical components right up to passenger jets.

Minsky adds another means to create the dynamic equations that are needed
to define monetary flows—the “Godley Table”—which is discussed in the next
section for users who are experienced in system dynamics. In this section, we’ll
give you a quick overview of the generic system dynamics approach to building
a model.

Though they differ in appearance, they all work the same way: variables in
a set of equations are linked by wires to mathematical operators. What would
otherwise be a long list of equations is converted into a block diagram, and
the block diagram makes the causal chain in the equations explicit and visually
obvious.

For example, say you wanted to define the rate of employment as depending
on output (GDP), labor productivity and population. Then you could define a
set of equations in a suitable program (like Mathcad):

GDP := 100

LaborProductivity := 1

Population := 100

Workers := GDP÷ LaborProductivity

EmpRate := Workers÷ Population

EmpRate = 1

93

94 CHAPTER 6. INTRODUCTION

Or you could define it using a block diagram, such as Minsky:

100

1

GDP

LaborProductivity

100

Workers

Population

EmpRate

For a simple algebraic equation like this, modern computer algebra programs
like Mathcad are just as good as a block diagram programs like Vissim or Minsky.
But the visual metaphor excels when you want to describe a complex causal
chain.

These causal chains always involve a relationship between stocks and flows.
Economists normally model stocks and flows by adding an increment to a stock.
For example, the level of capital K is defined as a difference equation, where
capital in year t is shown as being capital in year t− 1 plus the investment that
took place that year:

Kt = Kt−1 + It−1

The problem with this approach is that in reality, capital is accumulating
on a daily, or even hourly, basis. It is better to model stock as continuous
quantities and for this reason, all stocks and flows in Minsky are handled instead
as integral equations. The amount of capital at time t is shown as the integral
of net investment between time 0 and today:

K(t) =

∫ t

0

I(s)ds

However, rather than being shown as an equation, the relationship is shown
as a diagram:

I ∫dt K

The advantages of the block diagram representation of dynamic equations
over a list of equations are:

• They make the causal relationships in a complex model obvious. It takes
a specialized mind to be able to see the causal relations in a large set of
mathematical equations; the same equations laid out as diagrams can be
read by anyone who can read a stock and flow diagram—and that’s most
of us;

6.2. EXPERIENCED IN SYSTEM DYNAMICS? 95

• The block diagram paradigm makes it possible to store components of a
complex block diagram in a group. For example, the fuel delivery system
in a car can be treated as one group, the engine as another, the exhaust
as yet another. This reduces visual complexity and also makes it possible
for different components of a complex model to be designed by different
groups and then “wired together” at a later stage.

For example, here’s a model of a 4 cylinder engine car—one of the simple
examples distributed with the program Vissim:

Programs like Vissim and Simulink have been in existence for almost 2
decades, and they are now mature products that provide everything their user-
base of engineers want for modeling and analyzing complex dynamic systems.
So why has Minsky been developed?

6.2 Experienced in system dynamics?

As an experienced system dynamics user (or if you’ve just read “New to system
dynamics?”), what you need to know is what Minsky provides that other system
dynamics programs don’t. That boils down to one feature: The Godley Table.
It enables a dynamic model of financial flows to be derived from a table that is
very similar to the accountant’s double-entry bookkeeping table.

The dynamics in financial flows could be modeled using the block diagram
paradigm. But it would also be very, very easy to make a mistake modeling
financial flows in such a system, for one simple reason: every financial flow
needs to be entered at least twice in a system—once as a source, and once as a
sink.

96 CHAPTER 6. INTRODUCTION

For example, if you go shopping and buy a new computer with your credit
card, you increase your debt to a bank and simultaneously increase the deposit
account of the retailer from whom you buy the computer. The two system
states in this model—your credit card (“BuyerCredit”) and the retailer’s deposit
account (“SellerDeposit”)—therefore have to have the same entry (let’s call this
“Card”) made into them. Such a transaction would look like this:

Card

∫dt BuyerCredit

∫dt SellerDeposit

That would work, but there’s nothing in the program that warns you if
you make a mistake like, for example, wiring up the BuyerCredit entry, but
forgetting the SellerDeposit one:

Card

∫dt BuyerCredit

∫dt SellerDeposit

Or, perhaps, wiring up both blocks, but giving one the wrong sign:

Card

∫dt BuyerCredit

∫dt SellerDeposit

In a very complex model, you might make a mistake like one of the above,
run the simulation and get nonsense results, and yet be unable to locate your
mistake.

Minsky avoids this problem by using the paradigm that accountants devel-
oped half a millennium ago to keep financial accounts accurately: double-entry
bookkeeping. Here is the same model in Minsky:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card Card 0

6.2. EXPERIENCED IN SYSTEM DYNAMICS? 97

This is an inherently better way to generate a dynamic model of financial
flows, for at least two reasons:

• All financial transactions are flows between entities. The tabular layout
captures this in a very natural way: each row shows where a flow origi-
nates, and where it ends up

• The program adopts the accounting practice of double-entry bookkeeping,
in which entries on each row balance to zero according to the accounting
equation (Assets=Liabilities+Equities). The source is shown as a positive
value increasing the value of assets, the sink is a positive value increas-
ing a corresponding liability. If you don’t ensure that each flow starts
somewhere and ends somewhere—say you make the same mistake as in
the block diagram examples above, then the program will identify your
mistake.

If you forget to enter the recipient in this transaction, then the Row Sum
identifies your mistake by showing that the row sums to “Card” rather than
zero:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card Card

And it also identifies if you give the wrong sign to one entry:

Flows ↓ / Stock Variables → BuyerCredit SellerDeposit Row Sum
asset liability

Initial Conditions 0 0 0
Buyer Accesses Credit Card −Card 2Card

Minsky thus adds an element to the system dynamics toolkit which is funda-
mental for modeling the monetary flows that are an intrinsic aspect of a market
economy. Future releases will dramatically extend this capability.

98 CHAPTER 6. INTRODUCTION

Chapter 7

Getting Started with
Minsky

7.1 System requirements

Minsky is an open source program available for Windows, Mac OS X, and var-
ious Linux distributions, as well as compilable on any suitable Posix compliant
system. Go to our SourceForge page to download the version you need. Linux
packages are available from the OpenSUSE build service.

7.2 Getting help

Press the F1 key, or select “help” from the context menu. Help is context-
sensitive.

7.3 Components of the Program

There are 6 components to the Minsky interface:

1. The menus.

File Edit Insert Options Runge Kutta Help

2. The Run buttons

3. The simulation speed slider

99

https://minsky.sourceforge.io
https://build.opensuse.org/package/show/home:hpcoder1/minsky

100 CHAPTER 7. GETTING STARTED WITH MINSKY

4. The Zoom buttons

5. The Wiring and Equation tabs

6. The design icons

7. And finally the Design Canvas–the large drawing area beneath the buttons
and icons.

7.3.1 Menu

File Edit Insert Options Runge Kutta Help
The menu controls the basic functions of saving and loading files, default

settings for the program, etc. These will alter as the program is developed; the
current menu items are:

7.3. COMPONENTS OF THE PROGRAM 101

File

About Minsky Tells you the version of Minsky that you are using.

New System Clear the design canvas.

Open Open an existing Minsky file (Minsky files have the suffix of “mky”).

Recent Files Provides a shortcut to some of your previously opened Minsky
files.

Library Opens a repository of models for the Minsky simulation system.

Save Save the current file.

Save As Save the current file under a new name.

Insert File as Group Insert a Minsky file directly into the current model as
a group

Export Canvas Export the current canvas into *svg, *pdf, *eps, *tex, or *m
format. If using LaTeX (*tex), produce the set of equations that define
the current system for use in documenting the model, for use in LaTeX
compatible typesetting systems. If your LaTeX implemention doesn’t sup-
port breqn, untick the wrap long equations option, which can be found in
the preferences panel under the options menu. If using a MatLab function
this can be used to simulate the system in a MatLab compatible system,
such as MatLab1 or Octave2.

Log simulation Outputs the results of the integration variables into a CSV
data file for later use in spreadsheets or plotting applications.

Recording Record the states of a model as it is being built for later replay.
This is useful for demonstrating how to build a model, but bear in mind
that recorded logs are not, in general, portable between versions of Minsky.

Replay recording Replay a recording of model states.

Quit Exit the program. Minsky will check to see whether you have saved your
changes. If you have, you will exit the program; if not, you will get a
reminder to save your changes.

Debugging use Items under the line are intended for developer use, and will
not be documented here. Redraw may be useful if the screen gets messed
up because of a bug.

1https://en.wikipedia.org/wiki/MATLAB
2http://www.gnu.org/software/octave/

https://en.wikipedia.org/wiki/MATLAB
http://www.gnu.org/software/octave/

102 CHAPTER 7. GETTING STARTED WITH MINSKY

Edit

• Undo and Redo allow you to step back and forward in your editing history.
If you step back a few steps, and then edit the model, all subsequent model
states will be erased from the history.

• Cut/copy/paste. Selecting, or lassoing a region of the canvas will select a
group of icons, which will be shaded to indicate the selected items. Wires
joining two selected items will also be selected. Note that, compatible with
X-windows, selecting automatically performs a copy, so the copy operation
is strictly redundant, but provided for users familiar with systems where
an explicit copy request is required. Cut deletes the selected items. Paste
will paste the items in the clipboard as a group into the current model. At
the time of writing, copy-pasting between different instances of Minsky,
or into other applications, may not work on certain systems. Pasting the
clipboard into a text-based application will be a Minsky schema XML
document.

L

N

emprate

NAIRU

PhillipsSlope

⇒

L

N

emprate

NAIRU

PhillipsSlope

• Create a group using the contents of the selection. Groups allow you to
organise more complicated systems specification into higher level modules
that make the overall system more comprehensible.

Insert

This menu contains a set of mathematical operator blocks for placement on the
Canvas. You can get the same effect by clicking on the Design Icons. Also
present are entries for Godley table items and Plots.

Options

The options menu allows you to customise aspects of Minsky.

Preferences

• Godley table show values. When ticked, the values of flow variables
are displayed in the Godley table whilst a simulation is running. This
will tend to slow down the simulation somewhat.

• Godley table output style — whether +/− or DR/CR (debit/credit)
indicators are used.

7.3. COMPONENTS OF THE PROGRAM 103

• Enable multiple equity columns - whether Godley table have more
than one equity columns.

• Number of recent files to display — affects the recent files menu.

• Wrap long equations in LaTeX export. If ticked, use the breqn pack-
age to produce nicer looking automatically line-wrapped formulae.
Because not all LaTeX implementations are guaranteed to support
breqn, untick this option if you find difficulty.

• select a font for variable names etc.

Background colour — select a colour from which a colour scheme is com-
puted.

Simulation

• Time unit allows one to specify units for the time dimension for dimen-
sional analysis. eg “year”, “s” etc.

• Controls aspect of the adaptive Runge-Kutta equation solver, which trade
off performance and accuracy of the model.

• Note a first order explicit solver is the classic Jacobi method, which is the
fastest, but least accurate solver.

• The algorithm is adaptive, so the step size will vary according to how stiff
the system of equations is.

• Specifying a minimum step size prevents the system from stalling, at the
expense of accuracy when the step size reaches that minimum.

• Specifying a maximum step size is useful to ensure one has sufficient data
points for smooth plots.

• An iteration is the time between updates to plots, increasing the number
of solver steps per iteration decreases the overhead involved in updating
the display, at the expense of smoothness of the plots. Screen refresh is the
period between screen updates, in ms. If an iteration takes less than this
time, the screen refresh is postponed until the time has expired. 100ms
is fast enough for a smooth animation of the simulation - increasing this
value will improve simulation performance at the cost of a jerky animation
of the simulation.

• Start time is the value of the system t variable when the system is reset.

• Run until time can be used to pause the simulation ince t reaches a certain
value. Setting this to “Infinity” causes the simulation to run indefinitely,
or until some arithmetic error occurs.

104 CHAPTER 7. GETTING STARTED WITH MINSKY

Help

Provides an in-program link to this manual. Note that pressing F1 will also
launch help windows in a cintext sensitive way, ie it will open the relevant help
section for where ever the mouse is over. Similarly, each item on the canvas has
a help menu item in the context menu relevant for that item.

7.3.2 Record/Replay Buttons

These buttons control the recording / replay mode of Minsky. You can
record your interactions with Minsky, and replay those interactions for demon-
stration/presentation purposes.

1. Record a session of building/modifying a model. Note that replaying a
recorded session always starts from a blank canvas, so if you’re recording
the modification of a model, ensure that the first thing recorded is to load
the model being modified. This button is a toggle button, so clicking it
again finishes the session, and closes the file.

2. Simulate/Replay button. Pressing this button changes Minsky into re-
play mode, and asks for a recording file. You may use the run buttons
(run/pause,stop and step), as well as the speed slider, to control the re-
play. This button is a toggle button, so clicking it again returns Minsky
back to the default simulation mode.

7.3.3 Recalculate button

The recalculate button computes the values of all variables at the start of
simulation. It is particularly useful for recalculating the state of the model with
tensor valued data.

7.3.4 Run Buttons

The Run buttons respectively:

1. Start a simulation–when started the button changes to a pause icon, al-

lowing you to pause the simulation .

7.3. COMPONENTS OF THE PROGRAM 105

2. Stop a simulation and reset the simulation time to zero

3. Step through the simulation one iteration at a time.

4. Reverse checkbox changes the simulation time direction. Bear in mind
that a simulation will eventually diverge from its original trajectory due
to chaotic effects.

7.3.5 Speed slider

The speed slider controls the rate at which a model is simulated. The default
speed is the maximum speed your system can support, but you can slow this
down to more closely observe dynamics at crucial points in a simulation.

7.3.6 Zoom buttons

The Zoom buttons zoom in and out on the wiring canvas. The same func-
tionality is accessed via the mouse scroll wheel. The reset zoom button 0

resets the zoom level to 1, and also recentres the canvas. It can also be used to
recentre the equation view.

The zoom to fit button zooms the model so that it just fits in the current
canvas window.

7.3.7 Simulation time

In the right hand top corner is a textual display of the current simulation time
t, and the current (adaptive) difference between iterations ∆t.

7.3.8 Wiring and Equations Tabs

This allows you to switch between the visual block diagram wiring view and
the more mathematical equations view.

106 CHAPTER 7. GETTING STARTED WITH MINSKY

7.3.9 Design Icons

These are the “nuts and bolts” of any system dynamics program. The num-
ber of icons will grow over time, but the key ones are implemented now:

Import data Opens an import CSV file dialog, allowing the creation of a
parameter from a CSV data file. See Importing CSV files.

Ravel See Ravel.

Plot widget Add plots to the canvas.

Sheet widget Add a sheet to the canvas.

Variable var .

This is a pull down menu, giving access to creating variables, constants
and parameters.

Variables are entities whose value changes as a function of time and its
relationship with other entities in your model. Click on it and a variable
definition window will appear:

The only essential step here is providing a name for the Variable. You
can also enter a value for it (and a rotation in degrees), but these can be
omitted. In a dynamic model, the value will be generated by the model
itself, provided its input is wired.

When you click on OK (or press Enter), the newly named variable will
appear in the top left hand corner of the Canvas. Move the mouse cursor
to where you want to place the variable on the Canvas, click, and it will
be placed in that location.

Constants are entities whose value is unaffected by the simulation or other
entities in the model. Click on it and a constant definition window will
appear:

7.3. COMPONENTS OF THE PROGRAM 107

The only essential element here is its value. You can also specify its
rotation on the Canvas in degrees. This lets you vary a parameter while
a simulation is running—which is useful if you wish to explore a range of
policy options while a model is running.

A constant is just a type of variable, which also include parameters (named
constants), flow variables, stock variables and integration variables. In
fact there is no real conceptual difference between creating a constant or
creating a variable, as you can switch the type using the type field.

Like the variable and constant button, the parameter button creates a
variable defaulting to the parameter type. Parameters differ from flow
variables in not having an input port, and differ from constants in having
a name and being controllable by a slider during simulation.

Lock Lock widgets are used with Ravels.

Notes Add textual annotations

Time t embeds a reference to the simulation time on the Canvas. This is not
necessary in most simulations, but can be useful if you want to make a
time-dependent process explicit, or control the appearance of a graph.

For example, by default a graph displays the simulation time on the hor-
izontal axis, so that cycles get compressed as a simulation runs for a
substantial period:

108 CHAPTER 7. GETTING STARTED WITH MINSKY

Wage

EmploymentRate

x 10

0 1 2 3

x 0.1

-10

-5

0

5

10

If a Time block is added to the marker for the x-axis range, you can control
the number of years that are displayed. This graph is set up to show a
ten year range of the model only:

Wage

EmploymentRate

Range

tt

x 1

8 9 10 11 12 13 14 15 16 17

x 0.1

-10

-5

0

5

10

Unary functions √ These are a fairly standard complement of mathematical
functions.

Binary operations . These execute the stated binary mathematical oper-
ations. Each input can take multiple wires as well—so that to add five

7.3. COMPONENTS OF THE PROGRAM 109

numbers together, for example you can wire 1 input to one port on the
Add block, and the other four to the other port.

Min & Max Functions These take the minimum and maximum values,
respectively. These also allow multiple wires per input.

Pow and log. These are binary operations (taking two arguments). In the
case of the power operation, the exponent is the top port, and the argu-
ment to be raised to that exponent is the bottom port. This is indicated
by the x and y labels on the ports. In the case of logarithm, the bottom
port (labelled b) is the base of the logarithm.

Logical Operators < ≤, =, ∧ ∨ ¬ (and, or, not)] These return 0 for false
and 1 for true.

Reduction operations ∑ This menu contains operations that reduce a vector
to a scalar, or reduce the rank of a tensor. Typically sum, product, any,
all etc.

Scans ∑+ These are running sums and the difference operator

Miscellaneous tensor operations ⊗ Any other tensor function not covered
elsewhere.

Switch Add a piecewise-defined function block to the canvas. Also known
as a hybrid function.

User defined function f(x) You can define your own function using an alge-
braic expression, such as exp(-x^2y)+.

Godley Table . This is the fundamental element of Minsky that is not
found (yet) in any other system dynamics program.

Clicking on it and placing the resulting Bank Icon on the Canvas enters a
Godley table into your model:

Double-click on the Bank Icon (or right-click and choose “Open Godley
Table” from the context menu) and you get a double-entry bookkeeping
table we call a Godley Table, which looks like the following onscreen:

110 CHAPTER 7. GETTING STARTED WITH MINSKY

Flows ↓ / Stock Vars →

+ — Initial Conditions

+ — →

Asset

+ — ← →

▼

Liability

+ — ←

▼

Equity

▼ A-L-E

0

Use this table to enter the bank accounts and financial flows in your model.
We discuss this later in the Tutorial (Monetary).

Integration ∫dt . This inserts a variable whose value depends on the integral of
other variables in the system. This is the essential element for defining a
dynamic model. Click on it and the following entity will appear at the top
left hand side of the canvas (and move with your mouse until you click to
place it somewhere:

∫dt int1

“int1” is just a placeholder for the integration variable, and the first thing
you should do after creating one is give it a name. Double-click on the
“int1”, or right click and choose Edit. This will bring up the following
menu:

Change the name to something appropriate, and give it an initial value.
For example, if you were building a model that included America’s popu-
lation, you would enter the following:

The integrated variable block would now look like this:

7.3. COMPONENTS OF THE PROGRAM 111

∫dt Population

To model population, you need to include a growth rate. According to
Wikipedia, the current US population growth rate is 0.97 percent per
annum. Expressed as an equation, this says that the annual change in
population, divided by its current level, equals 0.0097:

1

Population(t)
·
(
d

dt
Population(t)

)
= 0.0097

To express this as an integral equation, firstly we multiply both sides of
this equation by Population to get:

d

dt
Population(t) = 0.0097 · Population(t)

Then we integrate both sides to get an equation that estimates what the
population will be T years into the future as:

Population(T) = 315 +

∫ T

0

0.0097 · Population(t)dt

Here, 315 (million) equals the current population of the USA, the year zero
is today, and T is some number of years from today. The same equation
done as a block diagram looks like this:

GrowthRate

∫dt Population

Or you can make it look more like the mathematical equation by right-
clicking on “Population” and choosing “Copy Var”. Then you will get
another copy of the Population variable, and you can wire up the equation
this way:

112 CHAPTER 7. GETTING STARTED WITH MINSKY

GrowthRate

Population

∫dt Population

Either method can be used. I prefer the latter because it’s neater, and it
emphasizes the link between the simple formula for a percentage rate of
change and a differential equation.

Derivative Operator d
dt This operator symbolically differentiates its input,

provided the input is differentiable. An error is generated if the input is
not differentiable.

7.3.10 Design Canvas

The Design Canvas is where you develop your model. A model consists of a
number of blocks—variables, constants and mathematical operators—connected
by wires.

The canvas is zoomable, either via the zoom buttons on the toolbar, or via
the mouse scroll wheel. It is also pannable, either via the scroll bars on the
right and bottom, or by holding the shift key and first mouse button together.
The canvas is effectively unlimited, however the scroll bars treat the canvas as
a 10000 pixels in size.

7.3. COMPONENTS OF THE PROGRAM 113

7.3.11 Equations tab

This displays the mathematical representation of the model

7.3.12 Summary Tab

This tab provides a summary table of all variables in the system, in a heirarchical
fashion that can be navigated by expanding or hiding sections by toggling the
caret. Each variable shows its name, it definition, dimensions (for tensor-valued
variables), initial expression, units and current value.

Most of these fields are editable, and usually do the obvious thing. Changing
a variable’s name will do a replace all instances operation to update all variables
of the same name. Changing a variable’s definition will replace the wiring graph
leading into the variable by a user defined function containing your edited string.
At some future point, functionality will be added to convert a user defined
function into a wiring graph.

7.3.13 Phillips diagram tab

This tab implement’s Minsky’s take on a Phillips diagram showing the stocks
and flows in a monetary economy. The Phillips tab shows all the information
contained in the Godley tables of the model - if there aren’t any, this tab will
be blank.

Initially, all the stocks will be arranged around a circle, with the flows shown
as connecting arrows showing the current direction of the flow. You can move
and rotate the stocks, and bend the flows to make a pleasing layout. The stocks
will be coloured as though filled with a fluid like Bill Phillip’s original analogue
computer, and dynamically updated as the simulation proceeds.

Publication tabs allow the creation of dashboards to emphasise certain as-
pects of a simulation. For example, you may wish to focus on a particular plot
or Godley table when running the simulation.

Multiple publication tabs can be created by clicking the ’+’ tab.
Any item from the wiring tab can be added to a publication tab, and then

moved, resized or rotated independently of the item on the wiring tab. For
items that dynamically update, the publication tab will be updated dynamically
during the simulation.

Textual annotation can be added to the publication tab, independently of
any annotations on the wiring tab.

Wires cannot be added to the publication tab, however you can insert arrows
(eg →) by typing the LaTeX text \rightarrow, and then rotate and scale the
arrow to connect parts of the dashboard together.

7.3.14 Wires

The wires in a model connect blocks together to define equations. For example,
to write an equation for 100/33, you would place a const on the canvas, and give
it the value of 100:

https://en.wikipedia.org/wiki/Phillips_Machine
https://en.wikipedia.org/wiki/Phillips_Machine

114 CHAPTER 7. GETTING STARTED WITH MINSKY

Then do the same for 33, and place a divide block on the canvas:

100

3

Then click on the right hand edge of 100 and drag to extend the wire to the
numerator (×) port of the divide operation.

Finally, add the other wire.

7.4 Working with Minsky

7.4.1 Components in Minsky

There are a number of types of components in Minsky

7.4. WORKING WITH MINSKY 115

1. Mathematical operators such as plus (+), minus (-)

2. Constants (or parameters, which are named constants) which are given a
value by the user

3. Variables whose values are calculated by the program during a simulation
and depend on the values of constants and other variables; and

4. Godley Tables, which define both financial accounts and the flows between
them. In the language of stock and flow modelling, the columns of a
Godley table are the stocks, which are computed by integrating over a
linear combination of flow variables.

5. Integrals — represent a variable computed by integrating a function for-
ward in time.

6. Groups, which allow components to be grouped into modules that can be
used to construct more complex models.

7.4.2 Inserting a model component

There are five ways to insert a component of a model onto the Canvas:

1. Click on the desired Icon on the Icon Palette, drag the block onto the
Canvas and release the mouse where you want to insert it

2. Choose Insert from the menu and select the desired block there

116 CHAPTER 7. GETTING STARTED WITH MINSKY

7.4. WORKING WITH MINSKY 117

3. Right-click on an existing block and choose copy. Then place the copy
where you want it on the palette.

4. Variables can be inserted by typing the variable name on the canvas, and
constants enetered by typing the numerical value. Similarly, operations
can be inserted by typing the operator name (eg sin, or *). Notes can be
inserted by starting the note with a # character.

5. Variables can also be picked from the Variable Browser and placed on the
canvas.

7.4.3 Creating an equation

Equations are entered in Minsky graphically. Mathematical operations like ad-
dition, multiplication and subtraction are performed by wiring the inputs up to
the relevant mathematical block. The output of the block is then the result of
the equation.

For example, a simple equation like

100/3 = 33.3

is performed in Minsky by defining a constant block with a value of 100, defining
another with a value of 3, and wiring them up to a divide-by block. Then attach
the output of the divide block to a variable, and run the model by clicking on

:

118 CHAPTER 7. GETTING STARTED WITH MINSKY

100

3

Answer

x 0.1

-10 -8 -6 -4 -2 0 2 4 6 8

x 0.1

-8

-6

-4

-2

0

2

4

6

8

If you click on the equation tab, you will see that it is:

Answer =
100

3

Very complex equations—including dynamic elements like integral blocks
and Godley Tables—are designed by wiring up lots of components, with the
output of one being the input of the next. See the tutorial for examples.

7.4.4 Wiring components together

A model is constructed by wiring one component to another in a way that defines
an equation. Wires are drawn from the output port of one block to the input
port of another. Ports are circles on the blocks to which wires can be attached,
which can be seen when hovering the pointer over the block. Variables have an
input and an output port; constants and parameters only have an output port.
A mathematical operator has as many input ports as are needed to define the
operation.

To construct an equation, such as Fred - Wilma = Barney:
Click the mouse near the output port of one block and drag the cursor to the

input port of another while holding the mouse button down. An arrow extends
out from the output port. Release the mouse button near the required input
port of the operator. A connection will be made.

Fred

Wilma

7.4. WORKING WITH MINSKY 119

The equation is completed by wiring up the other components in the same
way.

Fred

Wilma

Barney

7.4.5 Creating a banking model

Creating a bank

The first step in creating a model with a banking sector is to click on the Godley
Table Icon in the Icon Palette, and place the block somewhere on the Canvas.

Entering accounts

Double click or right click on the Godley table block to bring up the Godley
Table. The table is divided up into sections representing the different accounting
asset classes: Asset, Liability and Equity. Assets represent what you have to
hand at any point in time, and should always be the sum of liabilities and
equity. Liabilities represent amounts that are owed to other parties, and equity
the amount of capital owned. The column A-L-E represents the accounting
equation (Assets−Liabilities−Equity), and a properly formatted Godley table
adhering to double entry accounting conventions will have this column zero for
all rows.

When a Godley Table is first loaded, each accounting class has room for one
account (also known as a stock) to be defined. To create an additional accounts,
click on the ‘+’ button above the first account. One click then adds another
column in which an additional account can be defined. Note that the table will
delete excess blank accounts, so you should name them as you go. You can
chancge the asset class of an account by moving it into the appropriate sector
using the ← and → buttons, or by clicking and dragging the column variable
name (the first row of the column).

Flows ↓ / Stock Vars →

+ — Initial Conditions

+ — →

Asset

+ — ← →

▼

Liability

+ — ←

▼

Equity

▼ A-L-E

0

A column can be deleted by clicking on the ‘–’ button above the column.
To define bank accounts in the system you enter a name into the row labeled

“Flows ↓ / Stock Variables→”. For example, if you were going to define a bank-
ing sector that operated simply as an intermediary between “Patient” people

120 CHAPTER 7. GETTING STARTED WITH MINSKY

and “Impatient” people—as in the Neoclassical “Loanable Funds” model–you
might define the following accounts:

Flows ↓ / Stock Vars →

+ — Initial Conditions

+ — →

Reserves

0

Asset

+ — ← →

▼ Patient

0

+ — ← →

▼ Impatient

0

Liability

+ — ←

▼ Safe

0

Equity

▼ A-L-E

0

As you enter the accounts, they appear at the bottom of the Bank block on
the canvas:

Godley0

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Entering flows between accounts

Flows between accounts are entered by typing text labels in the accounts in-
volved. The source label is entered as a simple name—for example, if Patient
is lending money to Impatient, the word “Lend” could be used to describe this
action. Firstly you need to create a row beneath the “Initial Conditions” row
(which records the amount of money in each account when the simulation be-
gins). You do this by clicking on the ‘+’ key on the Initial Conditions row. This
creates a blank row for recording a flow between accounts.

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑

+ — →

Reserves

0

Asset

+ — ← →

▼ Patient

0

+ — ← →

▼ Impatient

0

Liability

+ — ←

▼ Safe

0

Equity

▼ A-L-E

0

0

The cell below “Initial Conditions” is used to give a verbal description of
what the flow is:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ Patient lends to Impatient

+ — →

Reserves

0

Asset

+ — ← →

▼ Patient

0

+ — ← →

▼ Impatient

0

Liability

+ — ←

▼ Safe

0

Equity

▼ A-L-E

0

0Patient lends to Impatient

The flows between accounts are then recorded in the relevant cells under-
neath the columns. Here we will start with putting the label “-Lend” into the
Patient column. It is negative, because Patient is lending to Impatient.

7.4. WORKING WITH MINSKY 121

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ Patient lends to Impatient

+ — →

Reserves

0

Asset

+ — ← →

▼ Patient

0

-Lend

+ — ← →

▼ Impatient

0

Liability

+ — ←

▼ Safe

0

Equity

▼ A-L-E

0

Lend

Notice that the program shows that the Row Sum for this transaction is
currently “Lend”, when it should be zero to obey the double-entry bookkeeping
rule that all rows must balance. This is because a destination for “Lend” has not
yet been specified. Please note that different asset class columns follow different
+ve and -ve rules, so an asset and a liability with the same value might need to
both be +ve or both -ve to sum to zero. The destination is Impatient’s account,
and to balance the row to zero this part of the transaction must be entered as
“Lend”:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ Patient lends to Impatient

+ — →

Reserves

0

Asset

+ — ← →

▼ Patient

0

-Lend

+ — ← →

▼ Impatient

0

Lend

Liability

+ — ←

▼ Safe

0

Equity

▼ A-L-E

0

0

The accounting equation also applies to the Initial Conditions (the amount
of money in each of the accounts prior to the flows between accounts): the Initial
Conditions must balance. This requires that there are entries on the Asset side
of the Banking ledger that exactly match the sum of Liabilities and Equity:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ Patient lends to Impatient

+ — →

Reserves

120

Asset

+ — ← →

▼ Patient

100

-Lend

+ — ← →

▼ Impatient

0

Lend

Liability

+ — ←

▼ Safe

20

Equity

▼ A-L-E

0

0

As you enter flows, these appear on the left hand side of the bank block:

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Defining flows

The entries in the Godley Table represent flows of money, which are denom-
inated in money units per unit of time. The relevant time dimension for an

122 CHAPTER 7. GETTING STARTED WITH MINSKY

economic simulation is a year (whereas in engineering applications, the relevant
time dimension is a second), so whatever you enter there represents a flow of
money per year.

You define the value of flows by attaching a constant or variable to the input
side of the flow into the bank as shown on the Canvas. For example, you could
assign Lend a value of 10 (which would represent a loan of $10 per year by
Patient to Impatient) by:

Create a constant with a value of 10, and attaching this to the input side of
Lend:

10

Godley0

Lend
R

e
s

e
rv

e
s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

What you have now defined is an annual flow from Patient to Impatient
of $10. In the dynamic equations this model generates, Minsky converts all
amounts in accounts to positive sums—it shows the financial system from the
point of the overall economy, rather than from the point of view of the bank:

Lend = 10
dImpatient

dt
= Lend

dPatient

dt
= −Lend

dReserves

dt
=

dSafe

dt
=

If you attach a graph to the accounts at the bottom of the bank block, you
will see the impact of this flow over time on the balances of the two accounts.
Patient’s account begins at $100 and falls at $10 per year, while Impatient’s
account begins at $0 and rises by $10 per year.

7.4. WORKING WITH MINSKY 123

10

x 1

0 2 4 6 8 10 12

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Obviously this will result in a negative total worth for Patient after 10 years,
so it is not a realistic model. A more sensible simple model would relate lending
to the amount left in Patient’s account (and a more complex model would relate
this to many other variables in the model). That is done in the next example,
where a constant “lendrate” has been defined and given the value of 0.1, and
Lend is now defined as 0.1 times the balance in Patient’s account. This now
results in a smooth exponential decay of the amount in the Patient account,
matched by a rise in the amount in Impatient account.

124 CHAPTER 7. GETTING STARTED WITH MINSKY

lendrate

x 10

0 1 2 3

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

This is because the equation you have defined is identical to a radioactive
decay equation, with the amount in the Patient account falling at 10 percent
per year:

Lend = lendrate× Patient
dImpatient

dt
= Lend

dPatient

dt
= −Lend

Note however that there are now wires crossing over other wires? There is
a neater way to define flows.

Copying Godley Table input & outputs

Right-click on the inputs and outputs of a Godley Table and choose “copy” from
the drop-down menu:

7.4. WORKING WITH MINSKY 125

Place the copied flows and accounts and place them away from the table.
Then wire up your definition there:

lendrate

Lend
Patient

This now results in a much neater model. The same process can be used to
tidy up graphs as well:

126 CHAPTER 7. GETTING STARTED WITH MINSKY

lendrate

Patient

Lend

Lend Patient

Impatient

x 10

0 1 2 3 4

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

A more complex model would have many more flows, and these in turn would
depend on other entities in the model, and be time-varying rather than using
a constant “lendrate” as in this example—see the Tutorial on a Basic Banking
Model for an example. This example uses the engineering concept of a “time
constant”, which is explained in the next section. Please note that right-clicking
godley table variables and selecting ”copy flow variables” creates a new group,
which, when clicked and selecting ”open in canvas”, changes the canvas to show
just that group. The normal canvas can be brought back by right-clicking and
selecting ”open master group”.

Using “Time Constants”

The value of 0.1 means that the amount of money in the Patient account falls
by one tenth every year (and therefore tapers towards zero). An equivalent way
to express this is that the “time constant” for lending is the inverse of 1/10, or
ten years. The next model uses a variable called τLend, and gives it a value of
10:

7.4. WORKING WITH MINSKY 127

As the simulation shows, the two models have precisely the same result
numerically:

128 CHAPTER 7. GETTING STARTED WITH MINSKY

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Lend
lendrate

Patient
Lend

Lend

Patient

Impatient

R
e

s
e

rv
e

s
2

P
a

ti
e

n
t2

Im
p

a
ti

e
n

t2

S
a

fe
2

Lend2

Lend2 Patient2

Impatient2

Patient2
Lend2

�Lend

x 10

0 1 2 3 4

x 10

0

2

4

6

8

10

x 10

0 1 2 3 4

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4 5

x 1

0

2

4

6

8

10

x 10

0 1 2 3 4 5

x 10

0

2

4

6

8

10

Godley0

Lend

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe
Godley289

Lend2

R
e

s
e

rv
e

s
2

P
a

ti
e

n
t2

Im
p

a
ti

e
n

t2

S
a

fe
2

The advantage of the time constant approach is that it is defined in terms
of the time that a process takes. A time constant of 10 says that, if this rate
of lending was sustained (rather than declining as the account falls), then in
precisely 10 years, the Patient account would be empty. The advantages of

7.4. WORKING WITH MINSKY 129

this formulation will be more obvious in the tutorial.

Multiple banks

There can be any number of Godley Tables—each representing a different finan-
cial institution or sector in an economy—in the one diagram. The name of the
institution can be altered by clicking on the default name (“Godley0” in the first
one created) and altering it. Here is an example with 4 such institutions/sectors
defined:

Central Bank Commercial Bank

Retail Banks Non-Bank Fls

If there are interlocking accounts in these banks—if one lends to another
for example—then what is an asset for one must be shown as a liability for the
other.

Godley tables may be further placed in groups, which allows scoping of the
flow variables and their defining equations, whilst still allowing the tables to be
coupled via global variables.

130 CHAPTER 7. GETTING STARTED WITH MINSKY

Chapter 8

Tutorial

8.1 Basic System Dynamics model

In 1965, Richard Goodwin, the great pioneer of complexity in economics, pre-
sented the paper “A Growth Cycle” to the First World Congress of the Econo-
metric Society in Rome. It was later published in a book collection (Goodwin,
Richard M. 1967. ”A Growth Cycle,” in C. H. Feinstein, Socialism, Capitalism
and Economic Growth. Cambridge: Cambridge University Press, pp. 54–58.);
to my knowledge it was never published in a journal.

Goodwin’s model has been subjected to much critical literature about im-
plying stable cycles, not matching empirical data, etc., but Goodwin himself
emphasized that it was a “starkly schematized and hence quite unrealistic model
of cycles in growth rates”. He argued however that it was a better foundation
for a more realistic model than “the more usual treatment of growth theory or
of cycle theory, separately or in combination.”

Goodwin emphasized the similarity of this model to the Lokta-Volterra
model of interacting predator and prey, which can make it seem as if it was
derived by analogy to the biological model. But in fact it can easily be derived
from a highly simplified causal chain:

• The level of output (Y) determines the level of employment (L), with
L = Y/a where a is a measure of labor productivity;

• Given a population N , the employment rate λ = L/N plays a role in
determining the rate of change of the wage w: Goodwin used a linear
approximation to a non-linear “Phillips Curve”:

131

https://en.wikipedia.org/wiki/Goodwin_model_(economics)

132 CHAPTER 8. TUTORIAL

0 1

ẇ/w

λ

His linear approximation was:

1

w

d

dt
w = −γ + ρ · λ

• In a simple two-class model, profits Π equals the level of output Y minus
the wage bill: Π = Y − wL

• For simplicity, Goodwin assumed that all profits were invested, so that
Investment equals profits: I = Π.

• Investment is the rate of change of the capital stock K;

• The level of output is, to a first approximation, determined by the level
of capital stock (K). A simple way of stating this is that Y is propor-
tional to K: Y = K/v, where v is a constant (Goodwin notes that this
relation “could be softened but it would mean a serious complicating of
the structure of the model”); and finally

• Goodwin assumed that labor productivity grew at a constant rate α, while
population grew at a constant rate β.

Goodwin published the model as a reduced form equation in the two
system states the employment rate (λ) and the workers’ share of output
(ω):

d

dt
λ = λ

(
1− ω
v
− α− β

)
d

dt
ω = ω · (ρ · λ− γ − α)

8.1. BASIC SYSTEM DYNAMICS MODEL 133

This form is useful for analytic reasons, but it obscures the causal chain that
actually lies behind the model. With modern system dynamic software, this
can be laid out explicitly, and we can also use much more meaningful names.
We’ll start with defining output (which is a variable). Click on var on the Icon
Palette, or click on the Operations menu and choose “Variable”. This will open
up the “Specify Variable Name” window:

Enter “GDP” into the “Name” field, and leave the other fields blank—since
GDP is a variable and we’re defining a dynamic system, the value of GDP
at any particular point in time will depend on the other entities in the model.
Now Click OK (or press “Enter”). The variable will now appear, attached to
the cursor. Move to a point near the top of the screen and click, which will
place the variable at that location.

We are now going to write the first part of the model, that Labor (Labor)
equals output (GDP) divided by labor productivity (LabProd). Just for the
sake of illustration, we’ll make a a parameter, which is a named constant (this
can easily be modified later). For this we start by clicking on const on the
Palette, or by choosing Insert/variable from the menu. This will pop-up the
Edit Constant window:

134 CHAPTER 8. TUTORIAL

There is actually no real difference between the “Edit constant” dialog and
the “Edit variable” dialog. The window’s title differs, and the default value
of Type is “constant” instead of “flow”. We’re going to select “parameter”,
allowing one to give the parameter a name.

Give the paramter the name “LabProd” and the value of 1 (i.e., one unit
of output per worker). Click OK or press Enter and the constant LabProd will
now be attached to the cursor. Place it below GDP:

Now we need to divide GDP by LabProd. Click on the symbol on the
palette and the symbol will be attached to the cursor. Drag it near the other
two objects and click. Your Canvas will now look something like this:

GDP

LabProd

Now to complete the equation, you have to attach GDP to the top of the
divide block and LabProd to the bottom.

Now move your cursor to the right hand side of GDP and click, hold the
mouse button down, and drag. An arrow will come out from GDP . Drag this
arrow to the top of the divide block (where you’ll see a tiny multiply sign) and
release the mouse. You should then see this:

GDP

LabProd

8.1. BASIC SYSTEM DYNAMICS MODEL 135

When the mouse hovers over a block, you will then see little circles that
identify the input and output ports of the block:

GDP

LabProd

Those are the connection points for wires, so start dragging from one and
release on the other. Now wire LabProd to the bottom of the Divide block
(where you’ll see a miniature divide symbol (blown up below):

GDP

LabProd

Then click on var in the Design Icons to create a new variable, call it Labor,
place it the the right of the Divide block, and wire the output port from the
Divide block to the input port for Labor:

GDP

LabProd

Labor

To show the correspondence between the flowchart above and standard mod-
eling equations, click on the equations tab:

GDP =

Labor =
GDP

LabProd

Now let’s keep going with the model. With Labor defined, the employment
rate will be Labor divided by Population. Define Population as a parameter
(we’ll later change it to a variable), and give it a value of 110.

136 CHAPTER 8. TUTORIAL

Add it to the Canvas and you are now ready to define the employment rate—
another variable. Click on var , give it the name “\lambda” (be sure to include
the backslash symbol), put another Divide block on the canvas, choose Wire
mode and wire this next part of the model up. You should now have:

GDP

LabProd

Labor

Population

λ

Now switch to the equations tab, and you will see

GDP =

Labor =
GDP

LabProd

λ =
Labor

Population

Notice that Minsky outputs a Greek λ in the equation. You can input
such characters directly, if your keyboard supports them as unicode characters,
however you can also use a subset of the LaTeX language to give your variables
more mathematial names.

With the employment rate defined, we are now ready to define a “Phillips
Curve” relationship between the level of employment and the rate of change
of wages. There was far more to Phillips than this (he actually tried to intro-
duce economists to system dynamics back in the 1950s), and far more to his

8.1. BASIC SYSTEM DYNAMICS MODEL 137

employment-wage change relation too, and he insisted that the relationship was
nonlinear (as in Goodwin’s figure above). But again for simplicity we’ll define
a linear relationship between employment and the rate of change of wages.

Here we need to manipulate the basic linear equation that Goodwin used:

1

w

d

dt
w = −γ + ρ · λ

Firstly multiply both sides by w:

d

dt
w = w · (−γ + ρ · λ)

Then integrate both sides (because integration is a numerically much more
stable process than differentiation, all system dynamics programs use integration
rather than differentiation):

w = w0 +

∫
w · (−γ + ρ · λ)

In English, this says that the wage now is the initial wage plus the integral
of the wage multiplied by its rate of change function. That’s what we now
need to add to the Canvas, and the first step is to spell out the wage change
function itself. Firstly, since we’re using a linear wage response function, the
rate of employment has to be referenced to a rate of employment at which
the rate of changes is zero. I suggest using Milton Friedman’s concept of a
“Non-Accelerating-Inflation-Rate-of-Unemployment”, or NAIRU. We need to
define this constant, subtract it from 1, and subtract the result from the actual
employment rate λ. To enter 1, click on const , define a constant and give it a
value of 1. Then define another variable NAIRU, and give it a value of 0.05 (5%
unemployment). Select “parameter” as the variable type. Subtract this from 1
and subtract the result from λ. You should have the following:

GDP

LabProd

Labor

Population

�

1

NAIRU

138 CHAPTER 8. TUTORIAL

Now we need to multiply this gap between the actual employment rate and
the “NAIRE” rate by a parameter that represents the response of wages to this
gap. Let’s call this parameter Emp {Response} (remember to include the
underscore and the braces). Define the parameter, give it a value of 10, and
multiply (λ minus NAIRE) by it:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

Now we are ready to add a crucial component of a dynamic model: the
integral block, which takes a flow as its input and has the integral of that flow
as the output. The wage rate w is such a variable, and we define it by clicking
on the ∫dt symbol in the Icon Palette (or by choosing Operations/Integrate from
the Insert menu). This then attaches the following block to the cursor:

∫dt int1

Now we need to rename this from the default name of “int1” to “w” for the
wage rate. Either right click or double-click on “int1” and this will bring up the
edit window . Rename it to “w” and give it a value of 1:

To compete the integral equation, we need to multiply the linear employ-
ment response function by the current wage before we integrate it (see the last
equation above). There are two ways to do this. First, place a multiply block
between the wage change function and the integral block, wire the function up
to one input on the multiply block, and then either:

8.1. BASIC SYSTEM DYNAMICS MODEL 139

• wire the output of the w block back to the other input on multiply block;
or

• Right-click on w, choose “Copy Var”, place that copy before the multiply
block, and wire it up.

The first method gives you this initial result:

∫dt w

That looks messy, but notice the blue dot on the wire? Click and drag on
that and you will turn the straight line connector into a curve:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

∫dt w

The second approach, which I personally prefer (it’s neater, and it precisely
emulates the integral equation), yields this result:

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

∫dt w

From this point on the model develops easily—“like money for old rope”, as
one of my maths lecturers used to say. Firstly if we multiply the wage rate w
by Labor we get the Wage Bill. To do this, firstly create the variable Wage
Bill, and put it well below where w currently is on your diagram:

140 CHAPTER 8. TUTORIAL

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill

∫dt w

Now right-click on WageBill and choose “Flip”. This rotates the block
through 180 degrees (any arbitrary rotation can be applied from the variable
definition window itself). Now right-click on Labor, which you’ve already de-
fined some time ago, and choose “Copy”. Place the copy of Labor to the right
of WageBill:

WageBill

Labor

Now insert a multiply block before WageBill, and wire w and Labor up to
it. Curve the wire from w using the blue dots (you can do this multiple times to
create a very curved path: each time you create a curve, another 2 curve points
are added that you can also manipulate, as I have done below:

8.1. BASIC SYSTEM DYNAMICS MODEL 141

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill
Labor

∫dt w

The next step is to subtract the WageBill from GDP to define Profits.
Take a copy of GDP, insert it above WageBill, insert a subtract block, and
wire it up to define the variable Profits:

Pro�ts
GDP

WageBill

In the simple Goodwin model, all Profits are invested, and investment of
course is the rate of change of the capital stock Capital. Create a variable
called Investment, wire this up to Profits, and then create a new integral variable
Capital using the ∫dt icon. Right-click or double-click on it to rename int2 to
Capital, and give it an initial value of 300:

Wire this up to Investment:

Investment Pro�t∫dtCapital

142 CHAPTER 8. TUTORIAL

Now there’s only one step left to complete the model: define a parameter
CapOutputRatio and give it a value of 3:

Divide Capital by this, and wire the result up to the input on GDP. You
have now built your first dynamic model in Minsky:

Before you attempt to run it, do two things. Firstly from the Runge Kutta
menu item, change the Max Step Size to 0.01—to get a smoother simulation.

Secondly, add some graphs by clicking on the icon, placing the graph
in the middle of the flowchart, and wiring up λ and w to two of the four inputs
on the left hand side. You will now see that, rather than reaching equilibrium,
the model cycles constantly:

8.2. BASIC BANKING MODEL 143

GDP

LabProd

Labor

Population

�

1

NAIRU

EmpResponse

w

WageBill
Labor

GDP

Pro�tsInvestment

CapOutRatio

�

w

∫dt w

∫dtCapital

x 1

0 2 4 6 8 10 12

x 0.1

8

9

10

11

12

13

If you click on the equations tab, you will see that you have defined the
following system of equations:

GDP =
Capital

CapOutRatio

Investment = Profits

Labor =
GDP

LabProd
Profits = GDP−WageBill

WageBill = w × Labor

λ =
Labor

Population

ω =
WageBill

GDP
dw

dt
= EmpResponse × (λ− (1−NAIRU)× w

dCapital

dt
= Investment

At this level of complexity, the equation form—if you’re accustomed to work-
ing in equations—is as accessible as the block diagram model from which it was
generated. But at much higher levels of complexity, the block diagram is far
easier to understand since it displays the causal links in the model clearly, and
can be structured in sub-groups that focus on particular parts of the system.

8.2 Basic Banking model

If you haven’t yet read the section on Creating a Banking Model, do so now.
This tutorial starts from the skeleton of the “Loanable Funds” model built in
that section, and using time constants to specify how quickly lending occurs.

144 CHAPTER 8. TUTORIAL

8.2.1 Loanable Funds

Our model begins with the single operation of Patient lending to Impatient at a
rate that, if kept constant at its initial level of of $10 per annum, would empty
the Patient account in 10 years. Because the rate of outflow declines as the
Patient account declines, the money in the account decays towards zero but
never quite reaches it.

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ Patient lends to Impatient

+ — →

Reserves

120

Asset

+ — ← →

▼ Patient

100

-Lend

+ — ← →

▼ Impatient

0

Lend

Liability

+ — ←

▼ Safe

20

Equity

▼ A-L-E

0

0

Many more actions need to be added to this model to complete it. For a
start, Impatient should be paying interest to Patient on the amount lent. Add
an additional row to the Godley Table by clicking on the ‘+’ key next to “Patient
lends to Impatient” to create a blank row:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ ↓ Patient lends to Impatient

+ — ↑

+ — →

Reserves

120

Asset

+ — ← →

▼ Patient

100

-Lend

+ — ← →

▼ Impatient

0

Lend

Liability

+ — ←

▼ Safe

20

Equity

▼ A-L-E

0

0

0

Then label this flow “Impatient pays interest” and make the entry “Interest”
into the cell for Patient on that row. Make the matching entry “-Interest” in
the cell for Impatient. The flow “Interest” now appears on the input side of the
Godley Table on the Canvas:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ ↓ Patient lends to Impatient

+ — ↑ Impatient pays interest

+ — →

Reserves

120

Asset

+ — ← →

▼ Patient

100

-Lend

Interest

+ — ← →

▼ Impatient

0

Lend

-Interest

Liability

+ — ←

▼ Safe

20

Equity

▼ A-L-E

0

0

0

Interest now has to be defined. It will be the amount in Impatient’s account
(since this began at zero) multiplied by the rate of interest charged by Patient:

rL

Impatient

Interest

With that definition, the dynamics of the model change: rather than the
Patient account falling to zero and Impatient rising to 100, the two accounts
stabilize once the outflow of new loans by Patient equals the inflow of interest
payments by Impatient:

8.2. BASIC BANKING MODEL 145

Patient

Impatient

Patient

�L

Lend

Impatient

rL

x 10

0 1 2 3 4 5 6 7 8

x 10

0

2

4

6

8

10

x 10

0 1 2 3 4 5 6 7 8

x 1

3

4

5

6

7

8

9

10

Godley0

Lend

Interest

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

S
a

fe

Though it stabilizes, this is is still a very incomplete model: neither Patient
nor Impatient are doing anything with the money apart from lending it and
paying interest. I am now going to assume that Impatient is borrowing the
money in order to hire workers to work at a factory and produce output for
sale. So we now need another account called Workers, and a payment from
Impatient to Workers called Wage:

Flows ↓ / Stock Vars →

+ — ↓ Initial Conditions

+ — ↑ ↓ Patient lends to Impatient

+ — ↑ ↓ Impatient pays interest

+ — ↑

+ — →

Reserves

120

Asset

+ — ← →

▼ Patient

100

-Lend

Interest

+ — ← →

▼ Impatient

0

Lend

-Interest

-Wage

+ — ← →

▼ Workers

0

Wage

Liability

+ — ←

▼ Safe

20

Equity

▼ A-L-E

0

0

0

0

In a more complex model, the Wage bill could be related to the current rate
times the number of workers in employment. In this simple model I will regard
the wage as a function of the amount of money in Impatient’s account turning
over several times a year in the payment of wages. Using a time constant, I
will assume that the amount in Impatient’s account turns over 3 times a year
paying wages, so that the time constant τT is 1/3rd of a year:

146 CHAPTER 8. TUTORIAL

Impatient
�T

The dynamics of this incomplete model are very different again: very little
money turns up in the Impatient account, and all of the money ends up in the
Workers account. However economic activity also ceases as both lending and
the flow of wages falls towards zero:

Patient

Impatient

Patient
�L

Lend

Impatient
rL

Impatient
�T

Wage

Workers

x 1

0 2 4 6 8 10 12

x 10

0

2

4

6

8

10

x 1

0 2 4 6 8 10 12

x 1

2

4

6

8

10

Godley0

Lend

Interest

Wage

R
e

s
e

rv
e

s

P
a

ti
e

n
t

Im
p

a
ti

e
n

t

W
o

rk
e

rs

S
a

fe

This is because wages are being paid to workers, but they are doing nothing
with it. So we need to include consumption by workers–and by Patient as well.
Here the reason time constants are useful may be more obvious. The time
constant for consumption by Workers is given the very low value of 0.05—or
1/20th of a year—which indicates that if their initial rate of consumption was
maintained without any wage income, they would reduce their bank balances
to zero in 1/20th of a year or about 2.5 weeks.

	Introduction
	Getting Started with Ravel
	System requirements
	Getting help
	Components of the Program
	Menu
	Record/Replay Buttons
	Recalculate button
	Run Buttons
	Speed slider
	Zoom buttons
	Simulation time
	Wiring and Equations Tabs
	Design Icons
	Design Canvas
	Equations tab
	Summary Tab
	Phillips diagram tab
	Publication tab
	Wires

	Working with Ravel
	Components in Ravel
	Inserting a model component
	Creating an equation
	Wiring components together

	A Ravel Tutorial
	Slicing, Dicing and Rotating Data
	Attaching Variables to Ravels
	Basic Analysis using Ravel
	Linking Ravels
	Displaying your results in Sheets and Plots
	Using Publication Tabs
	Working with Other Programs
	Importing Data into Ravel

	Reference
	Operations
	Special constants
	Percent
	add +
	subtract -
	multiply
	divide
	log
	pow xy
	lt <
	le
	eq =
	min
	max
	and
	or
	not
	time t
	Gamma
	Factorial !
	Polygamma (n)(x)
	differentiate d/dt
	User defined function
	copy
	integrate dt
	sqrt "1270
	exp
	ln
	sin
	cos
	tan
	asin
	acos
	atan
	sinh
	cosh
	tanh
	abs |x|
	floor x
	frac

	Tensor operations
	sum
	product
	infimum
	supremum
	any
	all
	infindex
	supindex
	running sum +
	running product +
	difference -,+
	index
	gather
	inner product
	outer product
	Meld
	Merge
	Slice
	Size
	Shape
	Mean
	Median
	Standard Deviation
	k-th moment
	Histogram
	Covariance
	Correlation coefficient

	Switch
	Variables
	Variable names
	Initial conditions
	Tensor valued initial conditions
	Sliders
	Importing a parameter from a CSV file
	Duplicate keys
	Variable Browser

	Wires
	Tensor values
	Groups
	Plot widget
	Sheet Widget
	Note Widget
	Godley Tables
	Context Menu
	Canvas background and keyboard shortcuts
	Dimensional Analysis
	Bookmarks
	Ravel

	User defined functions
	Introduction
	Capabilities
	Example expressions
	Copyright notice
	Built-in operations & functions
	Arithmetic & Assignment Operators
	Equalities & Inequalities
	Boolean Operations
	General Purpose Functions
	Trigonometry Functions
	String Processing
	Control Structures

	Fundamental types

	Introduction
	New to system dynamics?
	Experienced in system dynamics?

	Getting Started with Minsky
	System requirements
	Getting help
	Components of the Program
	Menu
	Record/Replay Buttons
	Recalculate button
	Run Buttons
	Speed slider
	Zoom buttons
	Simulation time
	Wiring and Equations Tabs
	Design Icons
	Design Canvas
	Equations tab
	Summary Tab
	Phillips diagram tab
	Wires

	Working with Minsky
	Components in Minsky
	Inserting a model component
	Creating an equation
	Wiring components together
	Creating a banking model

	Tutorial
	Basic System Dynamics model
	Basic Banking model
	Loanable Funds

